Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
94
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Impact of Er substitution on the properties of NdFeO3: structural, magnetic and microwave absorption

, , , , , & show all
Pages 266-275 | Received 14 Sep 2021, Accepted 27 Jul 2023, Published online: 14 Aug 2023

References

  • Vilarinho R, Bouvier P, Guennou M, et al. Crossover in the pressure evolution of elementary distortions in RFeO3 perovskites and its impact on their phase transition. Phys Rev B. 2019;99. DOI:10.1103/PhysRevB.99.064109
  • Yuan SJ, Ren W, Hong F, et al. Spin switching and magnetization reversal in single-crystal NdFeO3. Phys Rev B. 2013;87. DOI:10.1103/PhysRevB.87.184405
  • Mir SA, Ikram M, Asokan K. Structural, optical and dielectric properties of Ni substituted NdFeO3. Optik. 2014;125:6903–6908. DOI:10.1016/j.ijleo.2014.08.050
  • Arman MM, Ahmed MA, El-Dek SI. Influence of vacancy co-doping on the physical features of NdFeO3 nanostructure perovskites. Appl Phys A. 2019;126. DOI:10.1007/s00339-019-3199-z
  • Singh MK, Jang HM, Gupta HC, et al. Polarized Raman scattering and lattice eigenmodes of antiferromagnetic NdFeO3. J Raman Spectrosc. 2008;39:842–848. DOI:10.1002/jrs.1923
  • Somvanshi A, Husain S, Manzoor S, et al. Structure of nanocrystalline Nd0.5R0.5FeO3 (R = La, Pr, and Sm) intercorrelated with optical, magnetic and thermal properties. J Alloys Compd. 2019;806:1250–1259. DOI:10.1016/j.jallcom.2019.07.333
  • Singh A, Rajput S, Padmanabhan B, et al. An experimental and theoretical study of magnetocaloric effect in Nd0.5Dy0.5FeO3. J Phys Condens Matter. 2019;31:355802. DOI:10.1088/1361-648X/ab22e7
  • Shalini T, Vijayakumar P, Kumar J. Studies on structural and magnetic properties of NdFeO3 single crystals grown by optical floating zone technique. Bull Mater Sci. 2020;43. DOI:10.1007/s12034-020-02259-4
  • Nguyen TA, Pham V, Pham TL, et al. Simple synthesis of NdFeO3 nanoparticles by the co-precipitation method based on a study of thermal behaviors of Fe (III) and Nd (III) hydroxides. Crystals. 2020;10. DOI:10.3390/cryst10030219
  • Husain S, Somvanshi A, Manzoor S, et al. A comparative study of NdFeO3 and NdFe0.7 Zn0.3O3: structural modifications, surface morphology and optical properties. AIP Conf Proc IEEE Eng Med Biol Soc. 2019;2115:030125. DOI:10.1063/1.5112964
  • Pikula T, Dzik J, Guzdek P, et al. Magnetic and magnetoelectric properties of Bi0.5Nd0.5FeO3 ceramics. Ceram Int. 2020;46:1804–1809. DOI:10.1016/j.ceramint.2019.09.155
  • Shanker J, Narsinga Rao G, Venkataramana K, et al. Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys Lett A. 2018;382:2974–2977. DOI:10.1016/j.physleta.2018.07.002
  • Yang M, Wang Z, Ji R, et al. Tunable microwave absorbing properties based on facile microwave-induced in-situ formation of interfacial structures. Appl Surf Sci. 2021;545:149079. DOI:10.1016/j.apsusc.2021.149079
  • Tong Z, Yao Q, Deng J, et al. Effects of Ni-doping on microstructure, magnetic and microwave absorption properties of CoFe2O4. Mater Sci Eng B 2021;268. DOI:10.1016/j.mseb.2021.115092
  • Yang X, Ge M, Zhang J, et al. Fabrication of Al2O3@BaFe12O19 core-shell powder by a modified heterogeneous precipitation method. Ceram Int 2019;45(3):3269–3275. DOI:10.1016/j.ceramint.2018.10.234
  • Liang Q, Tong Z, Guo J, et al. Structural, magnetic and microwave properties of Ba1-xNdxFe12O19. J Magn Magn Mater. 2021;539. DOI:10.1016/j.jmmm.2021.168400
  • Mordina B, Tiwari RK, Setua DK, et al. Impact of graphene oxide on the magnetorheological behaviour of BaFe12O19 nanoparticles filled polyacrylamide hydrogel. Polymer. 2016;97:258–272. DOI:10.1016/j.polymer.2016.05.026
  • Peymanfar R, Javanshir S, Naimi-Jamal MR, et al. Morphology and medium influence on microwave characteristics of nanostructures: a review. J Mater Sci. 2021;36:17457–17477. DOI:10.1007/s10853-021-06394-z
  • Rojas-Ayala C, Passamani EC, Litterst FJ, et al. Weakly interacting ultra-fine Fe nanoparticles embedded in Yb metallic matrix. J Magn Magn Mater. 2020;525:167654. DOI:10.1016/j.jmmm.2020.167654
  • Al-Yahmadi IZ, Gismelssed A, Abdel-Latif IA, et al. Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-xSrxMnO3 (0.0 ≤ x ≤ 0.8) synthesized using modified sol-gel method. J Alloys Compd. 2021;857:157566. DOI:10.1016/j.jallcom.2020.157566
  • Tsymbal LT, Kamenev VI, Bazaliy YB, et al. Structural properties of ErFeO3 in the spin-reorientation region. Phys Rev B. 2005;72(5):052413(1-4). DOI:10.1103/PhysRevB.72.052413
  • Hassan A, Ding W, Aslam MA, et al. Microwave absorption property of coffee waste bio-carbon modified by industrial waste MnFe2O4 particles. J Mater Res Technol. 2020;9(6):12869–12879. DOI:10.1016/j.jmrt.2020.09.015
  • Gao Z, Jia Z, Zhang J, et al. Tunable microwave absorbing property of LaxFeO3/C by introducing A-site cation deficiency. J Mater Sci Mater Electron. 2019;30:13474–13487. DOI:10.1007/s10854-019-01715-0
  • Xg A, Zy A, Yz A, et al. The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon. 2021;188:1–11. DOI:10.1016/j.carbon.2021.11.045
  • Peymanfar R, Yektaei M, Javanshir S, et al. Regulating the energy band-gap, UV-Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 2020;209(8):122981. DOI:10.1016/j.polymer.2020.122981
  • Peymanfar R, Azadi F. La-substituted into the CuFe2O4 nanostructure: a study on its magnetic, crystal, morphological, optical, and microwave features. J Mater Sci Mater Electron 2020;31(12). DOI:10.1007/s10854-020-03501-9
  • Duan Y, Liu W, Song L, et al. A discrete structure: FeSiAl/carbon black composite absorption coatings. Mater Res Bull. 2017;88:41–48. DOI:10.1016/j.materresbull.2016.12.015
  • Wang Y, Wu XM, Zhang WZ, et al. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances. Mater Res Bull. 2018;98:59–63. DOI:10.1016/j.materresbull.2017.10.004
  • Qin M, Zhang LM, Wu HJ. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci. 2022;9:2105553. DOI:10.1002/advs.202105553
  • Liu XG, Or SW, Leung CM, et al. Core/shell/shell-structured nickel/carbon/polyaniline nanocapsules with large absorbing bandwidth and absorber thickness range. J Appl Phys. 2014;115:17A507. DOI:10.1063/1.4861581
  • Zeng X, Cheng X, Yu R, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon. 2020. DOI:10.1016/j.carbon.2020.07.028
  • Peymanfar R, Mohammadi A, Javanshir S. Preparation of graphite-like carbon nitride/polythiophene nanocomposite and investigation of its optical and microwave absorbing characteristics. Compos Commun. 2020;21:100421. DOI:10.1016/j.coco.2020.100421
  • Singh J, Singh C, Kaur D, et al. Tunable microwave absorption in Co-Al substituted M-type Ba-Sr hexagonal ferrite. Mater Des. 2016;110:749–761. DOI:10.1016/j.matdes.2016.08.049
  • Huang Y, Ding X, Li S, et al. Magnetic reduced graphene oxide nanocomposite as an effective electromagnetic wave absorber and its absorbing mechanism. Ceram Int. 2016;42:17116–17122. DOI:10.1016/j.ceramint.2016.07.223

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.