Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced densification and ionic conductivity of LLZO by flash sintering

, &
Pages 336-346 | Received 03 Apr 2023, Accepted 26 Sep 2023, Published online: 05 Oct 2023

References

  • Zheng F, Kotobuki M, Song S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources. 2018;389:198–213. doi:10.1016/j.jpowsour.2018.04.022
  • Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem. 2021;59:83–99. doi:10.1016/j.jechem.2020.10.017
  • Chan CK, Yang T, Weller JM. Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim Acta. 2017;253:268–280. doi:10.1016/j.electacta.2017.08.130
  • Golmohammad M, Sazvar A, Shahraki MM, et al. Synthesis and characterization of bar-like maghemite (γ-Fe2O3) as an anode for Li-ion batteries. Ceram Int. 2022;48(18):27148–27153. doi:10.1016/j.ceramint.2022.06.026
  • Meng X, Huang J, Bian Y, et al. Flexible Fe3O4/PCNFs membrane prepared by an innovative method as high-performance anode for lithium-ion battery. J Solid State Chem. 2021;303:122456. doi:10.1016/j.jssc.2021.122456
  • Golmohammad M, Shahraki MM, Golestanifard F, et al. Synthesis and characterization of nanoflaky maghemite (γ-Fe2O3) as a versatile anode for Li-ion batteries. Ceram Int. 2019;45(1):131–136. doi:10.1016/j.ceramint.2018.09.143
  • Raju MM, Altayran F, Johnson M, et al. Crystal structure and preparation of Li7La3Zr2O12 (LLZO) solid-state electrolyte and doping impacts on the conductivity: an overview. Electrochem. 2021;2(3):390–414. doi:10.3390/electrochem2030026
  • Chen F, Yang D, Zha W, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta. 2017;258:1106–1114. doi:10.1016/j.electacta.2017.11.164
  • Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics. 2012;206:28–32. doi:10.1016/j.ssi.2011.10.022
  • Huo H, Chen Y, Li R, et al. Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ Sci. 2020;13(1):127–134. doi:10.1039/C9EE01903K
  • Cheng X-B, Zhao C-Z, Yao Y-X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chemistry. 2019;5(1):74–96. doi:10.1016/j.chempr.2018.12.002
  • Košir J, Mousavihashemi S, Wilson BP, et al. Comparative analysis on the thermal, structural, and electrochemical properties of Al-doped Li7La3Zr2O12 solid electrolytes through solid state and sol-gel routes. Solid State Ionics. 2022;380:115943. doi:10.1016/j.ssi.2022.115943
  • Jonson RA, Yi E, Shen F, et al. Optimization of tape casting for fabrication of Li6.25Al0.25La3Zr2O12 sheets. Energy Fuels. 2021;35(10):8982–8990. doi:10.1021/acs.energyfuels.1c00566
  • Dussart T, Rividi N, Fialin M, et al. Critical current density limitation of LLZO solid electrolyte: microstructure vs interface. J Electrochem Soc. 2021;168(12):120550. doi:10.1149/1945-7111/ac44be
  • Chen C, Sun Y, He L, et al. Microstructural and electrochemical properties of Al- and Ga-doped Li7La3Zr2O12 garnet solid electrolytes. ACS Appl Energy Mater. 2020;3(5):4708–4719. doi:10.1021/acsaem.0c00347
  • Zhuang L, Huang X, Lu Y, et al. Phase transformation and grain-boundary segregation in Al-doped Li7La3Zr2O12 ceramics. Ceram Int. 2021;47(16):22768–22775. doi:10.1016/j.ceramint.2021.04.295
  • Gao D. Microwave assisted reactive sintering for Al doped Li7La3Zr2O12 lithium ion solid state electrolyte. Mater Res Express. 2019;6(12):125539. doi:10.1088/2053-1591/ab62ef
  • Zhang Y., Chen F., Tu R., et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J Power Sources. 2014;268:960–964. doi:10.1016/j.jpowsour.2014.03.148
  • David IN, Thompson T, Wolfenstine J, et al. Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc. 2015;98(4):1209–1214. doi:10.1111/jace.13455
  • Zhang Y, Luo D, Luo W, et al. High-purity and high-density cubic phase of Li7La3Zr2O12 solid electrolytes by controlling surface/volume ratio and sintering pressure. Electrochim Acta. 2020;359:136965. doi:10.1016/j.electacta.2020.136965
  • Li H-Y, Huang B, Huang Z, et al. Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceram Int. 2019;45(14):18115–18118. doi:10.1016/j.ceramint.2019.05.241
  • Yang L, Dai Q, Liu L, et al. Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram Int. 2020;46(8, Part A):10917–10924. doi:10.1016/j.ceramint.2020.01.106
  • Kern A, McGinn PJ. Ultrafast high-temperature sintering of Li7La3Zr1.75Nb0.25Al0.15O12 (LLZO). J Eur Ceram Soc. 2022;42(16):7501–7507. doi:10.1016/j.jeurceramsoc.2022.08.054
  • Scheld WS, Lobe S, Dellen C, et al. Rapid thermal processing of garnet-based composite cathodes. J Power Sources. 2022;545:231872. doi:10.1016/j.jpowsour.2022.231872
  • Avila V, Raj R. Reactive flash sintering of powders of four constituents into a single phase of a complex oxide in a few seconds below 700°C. J Am Ceram Soc. 2019;102(11):6443–6448. doi:10.1111/jace.16625
  • Clemenceau T, Andriamady N, MK PK, et al. Flash sintering of Li-ion conducting ceramic in a few seconds at 850°C. Scr Mater. 2019;172:1–5. doi:10.1016/j.scriptamat.2019.06.038
  • Avila V, Yoon B, Ghose S, et al. Phase evolution during reactive flash sintering of Li6.25Al0.25La3Zr2O12 starting from a chemically prepared powder. J Eur Ceram Soc. 2021;41(8):4552–4557. doi:10.1016/j.jeurceramsoc.2021.02.054
  • Sazvar A, Sarpoolaky H, Golmohammad M. The effects of electric field on physical properties of LLZO made by flash sintering method. Solid State Ionics. 2022;386:116054. doi:10.1016/j.ssi.2022.116054
  • Cologna M, Francis JS, Raj R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc. 2011;31(15):2827–2837. doi:10.1016/j.jeurceramsoc.2011.07.004
  • Raj R, Cologna M, Francis JS. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc. 2011;94(7):1941–1965. doi:10.1111/j.1551-2916.2011.04652.x
  • Yu M, Grasso S, Mckinnon R, et al. Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram. 2017;116(1):24–60. doi:10.1080/17436753.2016.1251051
  • Biesuz M, Pinter L, Saunders T, et al. Investigation of electrochemical, optical and thermal effects during flash sintering of 8YSZ. Materials (Basel). 2018;11(7):1214. doi:10.3390/ma11071214
  • Caliman LB, Bouchet R, Gouvea D, et al. Flash sintering of ionic conductors: the need of a reversible electrochemical reaction. J Eur Ceram Soc. 2016;36(5):1253–1260. doi:10.1016/j.jeurceramsoc.2015.12.005
  • Ji W, Parker B, Falco S, et al. Ultra-fast firing: effect of heating rate on sintering of 3YSZ, with and without an electric field. J Eur Ceram Soc. 2017;37(6):2547–2551. doi:10.1016/j.jeurceramsoc.2017.01.033
  • Zhang Y, Nie J, Chan JM, et al. Probing the densification mechanisms during flash sintering of ZnO. Acta Mater. 2017;125:465–475. doi:10.1016/j.actamat.2016.12.015
  • Kotobuki M. Compatibility of Li7La3Zr2O12 solid electrolyte to All-solid-state battery using Li metal anode. J Electrochem Soc. 2010;157:A1076–A1079. doi:10.1149/1.3474232
  • Buschmann H, Dölle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys. 2011;13(43):19378–19392. doi:10.1039/c1cp22108f
  • Heo TW, Grieder A, Wang B, et al. Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy. npj Comput Mater. 2021;7(1):1–15. doi:10.1038/s41524-020-00473-6
  • Shi R, Pu Y, Wang W, et al. Flash sintering of barium titanate. Ceram Int. 2019;45(6):7085–7089. doi:10.1016/j.ceramint.2018.12.211
  • Grimley CA, Prette AL, Dickey EC. Effect of boundary conditions on reduction during early stage flash sintering of YSZ. Acta Mater. 2019;174:271–278. doi:10.1016/j.actamat.2019.05.001
  • Sun K, Zhang J, Jiang T, et al. Flash-Sintering and characterization of La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolytes for solid oxide fuel cells. Electrochim Acta. 2016;196:487–495. doi:10.1016/j.electacta.2016.02.207
  • Francis JSC, Cologna M, Raj R. Particle size effects in flash sintering. J Eur Ceram Soc. 2012;32(12):3129–3136. doi:10.1016/j.jeurceramsoc.2012.04.028
  • Su X, Bai G, Jia Y, et al. Flash sintering of lead zirconate titanate (PZT) ceramics: influence of electrical field and current limit on densification and grain growth. J Eur Ceram Soc. 2018;38(10):3489–3497. doi:10.1016/j.jeurceramsoc.2018.04.007
  • Yang S, Yang S, Zhu Y, et al. Influence of electrical field on microstructure and mechanical properties of flash sintered alumina ceramics. Ceram Int. 2022;48(12):17632–17636. doi:10.1016/j.ceramint.2022.03.033
  • Ouyang T, Pu Y, Li X, et al. Influence of current density on microstructure and dielectric properties during the flash sintering of strontium titanate ceramics. J Alloys Compd. 2022;903:163843. doi:10.1016/j.jallcom.2022.163843
  • Mishara TP, Neto RR, Raj R, et al. Current-rate flash sintering of gadolinium doped ceria: microstructure and defect generation. Acta Mater. 2020;189:145–153. doi:10.1016/j.actamat.2020.02.036
  • Jones GM, Biesuz M, Ji W, et al. Promoting microstructural homogeneity during flash sintering of ceramics through thermal management. MRS Bull. 2021;46(1):59–66. doi:10.1557/s43577-020-00010-2
  • Raj R, Kulkarni A, Lebrun J-M, et al. Flash sintering: a new frontier in defect physics and materials science. MRS Bull. 2021;46(1):36–43. doi:10.1557/s43577-020-00011-1
  • Candelario VM, Moreno R, Todd RI, et al. Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. J Eur Ceram Soc. 2017;37(2):485–498. doi:10.1016/j.jeurceramsoc.2016.08.024
  • Dong Y. arXiv preprint arXiv:1702.05565; 2017.
  • Bai Y, Zhang Y, Tian Z, et al. Effect of current density on the microstructure and mechanical properties of 3YSZ/Al2O3 composites by flash sintering. Materials. 2022;15(9):3110. doi:10.3390/ma15093110
  • Hu S, Li Y-F, Yang R, et al. Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram Int. 2018;44(6):6614–6618. doi:10.1016/j.ceramint.2018.01.065
  • Alizadeh SM, Moghim I, Golmohammad M. Synthesis and characterization of highly conductive Ga/Y co-doped LLZO by facile combustion sol-gel method. Solid State Ionics. 2023;397:116260. doi:10.1016/j.ssi.2023.116260
  • Ashuri M, Golmohammad M, Mehranjani AS, et al. Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries. J Mater Sci: Mater Electron. 2021;32(5):6369–6378. doi:10.1007/s10854-021-05353-3
  • Sharifi O, Golmohammad M, Soozandeh M, et al. Effects of Al doping on the properties of Li 7La 3Zr 2 O12 garnet solid electrolyte synthesized by combustion sol -gel method. Iran J Mater Sci Eng. 2022;19(3):1–10. doi:10.22068/ijmse.2631
  • Xu M, Park MS, Lee JM, et al. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr). Phys Rev B. 2012;85(5):052301. doi:10.1103/PhysRevB.85.052301
  • Zeier WG, Zhou S, Lopez-Bermudez B, et al. Dependence of the Li-Ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Appl Mater Interfaces. 2014;6(14):10900–10907. doi:10.1021/am4060194

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.