Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers

, , , , , , & show all
Pages 347-363 | Received 30 Apr 2023, Accepted 26 Sep 2023, Published online: 16 Oct 2023

References

  • Amer I, Kohail M, El-Feky MS, et al. A review on alkali-activated slag concrete. Ain Shams Eng J. 2021;12(2):1475–1499. doi:10.1016/j.asej.2020.12.003
  • Shariati M, Shariati A, Trung NT, et al. Alkali-activated slag (AAS) paste: correlation between durability and microstructural characteristics. Constr Build Mater. 2021;267:120886, doi:10.1016/j.conbuildmat.2020.120886
  • Fu Q, Bu M, Zhang Z, et al. Hydration characteristics and microstructure of alkali-activated slag concrete: a review. Engineering. 2021;20:162–179.
  • Awoyera P, Adesina A. A critical review on application of alkali activated slag as a sustainable composite binder. Case StudConstruct Mater. 2019;11:e00268, doi:10.1016/j.cscm.2019.e00268
  • Li L, Xie J, Zhang B, et al. A state-of-the-art review on the setting behaviours of ground granulated blast furnace slag- and metakaolin-based alkali-activated materials. Constr Build Mater. 2023;368:130389, doi:10.1016/j.conbuildmat.2023.130389
  • Abhishek HS, Prashant S, Kamath MV, et al. Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review. Innovat Infrastruct Solut. 2022;7:1–14. doi:10.1007/s41062-021-00711-w
  • Puertas F, Palacios M, Manzano H, et al. A model for the CASH gel formed in alkali-activated slag cements. J Eur Ceram Soc. 2011;31:2043–2056. doi:10.1016/j.jeurceramsoc.2011.04.036
  • Gruskovnjak A, Lothenbach B, Holzer L, et al. Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res. 2006;18(3):119–128. doi:10.1680/adcr.2006.18.3.119
  • Collins F, Sanjayan JG. Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos. 2001;23(4–5):345–352. doi:10.1016/S0958-9465(01)00003-8
  • Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24(6):1033–1043. doi:10.1016/0008-8846(94)90026-4
  • Atiş CD, Bilim C, Çelik Ö, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–555. doi:10.1016/j.conbuildmat.2007.10.011
  • Wang SD, Pu XC, Scrivener KL, et al. Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res. 1995;7(27):93–102. doi:10.1680/adcr.1995.7.27.93
  • Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res. 1999;29(8):1313–1321. doi:10.1016/S0008-8846(99)00154-4
  • Mohamed OA. A review of durability and strength characteristics of alkali-activated slag concrete. Materials (Basel). 2019;12(8):1198, doi:10.3390/ma12081198
  • Xiao R, Shen Z, Si R, et al. Alkali-activated slag (AAS) and OPC-based composites containing crumb rubber aggregate: physico-mechanical properties, durability and oxidation of rubber upon NaOH treatment. J Clean Prod. 2022;367:132896, doi:10.1016/j.jclepro.2022.132896
  • Ji X, Gu X, Wang Z, et al. Admixture effects on the rheological/mechanical behavior and micro-structure evolution of alkali-activated slag backfills. Minerals. 2023;13(1):30, doi:10.3390/min13010030
  • Zamanabadi SN, Zareei SA, Shoaei P, et al. Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: effects of alkali activator solution on physical and mechanical properties. Constr Build Mater. 2019;229:116911, doi:10.1016/j.conbuildmat.2019.116911
  • De Filippis U, Prud’Homme E, Meille S. Relation between activator ratio, hydration products and mechanical properties of alkali-activated slag. Constr Build Mater. 2021;266:120940, doi:10.1016/j.conbuildmat.2020.120940
  • Lao JC, Huang BT, Xu LY, et al. Seawater sea-sand Engineered Geopolymer Composites (EGC) with high strength and high ductility. Cem Concr Compos. 2023;138:104998, doi:10.1016/j.cemconcomp.2023.104998
  • Lao JC, Huang BT, Fang Y, et al. Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cem Concr Res. 2023;165:107075, doi:10.1016/j.cemconres.2022.107075
  • Amran M, Fediuk R, Abdelgader HS, et al. Fiber-reinforced alkali-activated concrete: a review. J Build Eng. 2022;45:103638, doi:10.1016/j.jobe.2021.103638
  • Ranjbar N, Zhang M. Fiber-reinforced geopolymer composites: a review. Cem Concr Compos. 2020;107:103498, doi:10.1016/j.cemconcomp.2019.103498
  • Korniejenko K, Lin WT, Šimonová H. Mechanical properties of short polymer fiber-reinforced geopolymer composites. J Compos Sci. 2020;4(3):128, doi:10.3390/jcs4030128
  • Abbas AGN, Aziz FNAA, Abdan K, et al. A state-of-the-art review on fibre-reinforced geopolymer composites. Constr Build Mater. 2022;330:127187, doi:10.1016/j.conbuildmat.2022.127187
  • Shaikh FUA. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr Build Mater. 2013;43:37–49. doi:10.1016/j.conbuildmat.2013.01.026
  • Farhan KZ, Johari MAM, Demirboğa R. Impact of fiber reinforcements on properties of geopolymer composites: a review. J Build Eng. 2021;44:102628, doi:10.1016/j.jobe.2021.102628
  • Laxmi G, Patil SG. Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete – a review. Mater Today Proc. 2022;65(2):1086–1094.
  • Korniejenko K, Figiela B, Miernik K, et al. Mechanical and fracture properties of long fiber reinforced geopolymer composites. Materials (Basel). 2021;14(18):5183, doi:10.3390/ma14185183
  • Figiela B, Šimonová H, Korniejenko K. State of the art, challenges, and emerging trends: geopolymer composite reinforced by dispersed steel fibers. Rev Adv Mater Sci. 2022;61(1):1–15. doi:10.1515/rams-2021-0067
  • Shah SFA, Chen B, Oderji SY, et al. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Constr Build Mater. 2020;243:118221, doi:10.1016/j.conbuildmat.2020.118221
  • Hammad N, El-Nemr A, Hasan HED. The performance of fiber GGBS based alkali-activated concrete. J Build Eng. 2021;42:102464, doi:10.1016/j.jobe.2021.102464
  • Sivakumar A, Srinivasan K. High performance fibre reinforced alkali activated slag concrete. Int J Civil Environ Eng. 2014;8(12):1288–1291.
  • Matalkah F, Ababneh A, Aqel R. Effect of fiber type and content on the mechanical properties and shrinkage characteristics of alkali-activated kaolin. Struct Concr. 2022;23(1):300–310. doi:10.1002/suco.202100061
  • Adesina A. Performance of fibre reinforced alkali-activated composites – a review. Materialia. 2020;12:100782, doi:10.1016/j.mtla.2020.100782
  • Abdollahnejad Z, Mastali M, Woof B, et al. High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater. 2020;241:118129, doi:10.1016/j.conbuildmat.2020.118129
  • Bernal S, De Gutierrez R, Delvasto S, et al. Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr Build Mater. 2010;24(2):208–214. doi:10.1016/j.conbuildmat.2007.10.027
  • Aydın S, Baradan B. The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Composites Part B: Eng. 2013;45(1):63–69. doi:10.1016/j.compositesb.2012.09.080
  • Eskandarinia M, Esmailzade M, Aslani F. Splitting tensile strength of recycled tire steel fiber-reinforced alkali-activated slag concrete designed by Taguchi method. Struct Concr. 2022;24(3):3365–3384.
  • Cheng H, Chen P, Rong X, et al. Effect of steel fibre and manufactured sand on mechanical properties of alkali-activated slag green cementitious material after high temperature. Case Stud Constr Mater. 2023;18:e01919, doi:10.1016/j.cscm.2023.e01919
  • Bernal S, de Gutiérrez RM, Rodríguez E, et al. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Mater de Construcción. 2009;59(293):53–62.
  • Yuan X, Guan H, Shi Y. Stress-Strain relationship of steel fiber reinforced alkali activated slag concrete under static compression. Adv Civil Eng. 2021;2021:1–12.
  • Perumal P, Nguyen H, Carvelli V, et al. High strength fiber reinforced one-part alkali activated slag composites from industrial side streams. Constr Build Mater. 2022;319:126124, doi:10.1016/j.conbuildmat.2021.126124
  • Karunanithi S, Anandan S. Flexural toughness properties of reinforced steel fibre incorporated alkali activated slag concrete. Adv Civil Eng. 2014;2014:1–12.
  • Abdollahnejad Z, Mastali M, Falah M, et al. Durability of the reinforced one-part alkali-activated slag mortars with different fibers. Waste Biomass Valorization. 2021;12:487–501. doi:10.1007/s12649-020-00958-x
  • Beglarigale A, Aydın S, Kızılırmak C. Fiber-Matrix bond characteristics of alkali-activated slag cement–based composites. J Mater Civ Eng. 2016;28(11):04016133, doi:10.1061/(ASCE)MT.1943-5533.0001642
  • Yang Y, Huang L, Xu L, et al. Temperature-dependent compressive stress-strain behaviors of alkali-activated slag-based ultra-high strength concrete. Constr Build Mater. 2022;357:129250, doi:10.1016/j.conbuildmat.2022.129250
  • Zhou X, Zheng W, Zeng Y, et al. Effect of fiber content and stress–strength ratio on the creep of basalt fiber–reinforced alkali-activated slag concrete. Struct Concr. 2022;23(1):382–394. doi:10.1002/suco.202100443
  • Khan MZN, Hao Y, Hao H, et al. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cem Concr Compos. 2018;85:133–152. doi:10.1016/j.cemconcomp.2017.10.011
  • Chen P, Wang Z, Cao S, et al. Study on axial compressive stress-strain relationship of alkali-activated slag lightweight aggregate concrete. Constr Build Mater. 2023;364:129991, doi:10.1016/j.conbuildmat.2022.129991
  • Alcaide JS, Alcocel EG, Puertas F, et al. Carbon fibre-reinforced, alkali-activated slag mortars. Materiales de Construcción. 2007;57(288):33–48.
  • Vilaplana JL, Baeza FJ, Galao O, et al. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Constr Build Mater. 2016;116:63–71. doi:10.1016/j.conbuildmat.2016.04.066
  • Park HM, Park C, Bang J, et al. Synergistic effect of MWCNT and carbon fiber hybrid fillers on electrical and mechanical properties of alkali-activated slag composites. Crystals (Basel). 2020;10(12):1139, doi:10.3390/cryst10121139
  • Vilaplana JL, Baeza FJ, Galao O, et al. Self-sensing properties of alkali activated blast furnace slag (BFS) composites reinforced with carbon fibers. Materials (Basel). 2013;6(10):4776–4786. doi:10.3390/ma6104776
  • Chen W, Xie Y, Li B, et al. Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2021;299:124002, doi:10.1016/j.conbuildmat.2021.124002
  • Yan S, He P, Jia D, et al. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites. Ceram Int. 2016;42(6):7837–7843. doi:10.1016/j.ceramint.2016.01.197
  • He P, Jia D, Lin T, et al. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int. 2010;36(4):1447–1453. doi:10.1016/j.ceramint.2010.02.012
  • So SM, Choi WH, Kim KH, et al. Mechanical properties of B4C–SiC composites fabricated by hot-press sintering. Ceram Int. 2020;46(7):9575–9581. doi:10.1016/j.ceramint.2019.12.222
  • Yang L, Wang T, Liu C, et al. Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering. J Alloys Compd. 2021;870:159473, doi:10.1016/j.jallcom.2021.159473
  • Wang H, Cai D, Yang Z, et al. Hot-press sintering studies of sol-gel-prepared composite powders: a novel preparation method to improve mechanical properties of BN-BAS composite ceramics. Ceram Int. 2022;48(12):17539–17547. doi:10.1016/j.ceramint.2022.03.019
  • Wang F, Wang H, Yang Q, et al. Fine-grained relaxor ferroelectric PMN-PT ceramics prepared using hot-press sintering method. Ceram Int. 2021;47(11):15005–15009. doi:10.1016/j.ceramint.2021.02.055
  • Sun ZL, Zhou Y, Jia DC, et al. Mechanical and thermal physical properties of amorphous SiCN(O) ceramic bulks prepared by hot-press sintering. Mater Lett. 2012;72:57–59. doi:10.1016/j.matlet.2011.12.053
  • Wang S, Ma X, He L, et al. High strength inorganic-organic polymer composites (IOPC) manufactured by mold pressing of geopolymers. Constr Build Mater. 2019;198:501–511. doi:10.1016/j.conbuildmat.2018.11.281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.