Publication Cover
Stochastics
An International Journal of Probability and Stochastic Processes
Volume 96, 2024 - Issue 1
80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lower and upper bounds for the explosion times of a system of semilinear SPDEs

, &
Pages 846-886 | Received 02 Mar 2022, Accepted 12 Feb 2024, Published online: 12 Mar 2024

References

  • H. Chen, The asymptotic behavior for neutral stochastic partial functional differential equations, Stoch. Anal. Appl. 35(6) (2017), pp. 1060–1083. http://doi.org/10.1080/07362994.2017.1353427
  • P.L. Chow, Explosive solutions of stochastic reaction–diffusion equations in mean Lp-norm, J. Differ. Equ. 250 (2011), pp. 2567–2580. https://doi.org/10.1016/j.jde.2010.11.008.
  • P.L. Chow, Stochastic partial differential equations, 2nd ed., Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.
  • P.L. Chow and K. Liu, Positivity and explosion in mean Lp-norm of stochastic functional parabolic equations of retarded type, Stoch. Process. Appl. 122(4) (2012), pp. 1709–1729. https://doi.org/10.1016/j.spa.2012.01.012.
  • I.D. Chueshov and P.A. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: itô's case, Stoch. Anal. Appl. 28(4) (2007), pp. 581–615. https://doi.org/10.1080/07362990008809687.
  • E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1990.
  • L. Denis, A. Matoussi, and L. Stoica, Lp estimates for the uniform norm of solutions of quasilinear SPDEs, Probab. Theory Related Fields 133(4) (2005), pp. 437–463. http://doi.org/10.1007/s00440-005-0436-5
  • M. Dozzi and J.A. López-Mimbela, Finite-time blowup and existence of global positive solutions of a semi-linear SPDE, Stoch. Process. Appl. 120(6) (2010), pp. 767–776. https://doi.org/10.1016/j.spa.2009.12.003
  • M. Dozzi, E.T. Kolkovska, and J.A. López-Mimbela, Exponential functionals of Brownian motion and explosion times of a system of semilinear SPDEs, Stoch. Anal. Appl. 31(6) (2013), pp. 975–991. http://dx.doi.org/10.1080/07362994.2013.817232
  • M. Dozzi, E.T. Kolkovska, and J.A. López-Mimbela, Global and non-global solutions of a fractional reaction–diffusion equation perturbed by a fractional noise, Stoch. Anal. Appl. 38(6) (2020), pp. 959–978. https://doi.org/10.1080/07362994.2020.1751659
  • M. Dozzi, E.T. Kolkovska, and J.A. López-Mimbela, Finite-time blowup and existence of global positive solutions of a semi-linear SPDE with fractional noise, Mod. Stoch. Theory Appl. 90 (2014), pp. 95–108.
  • L.C. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, 2014.
  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964.
  • H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=Δ+u1+α, J. Fac. Sci. Univ. Tokyo 13 (1966), pp. 109–124.
  • H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, in Proc. Symposium in Pure Math., Amer. Math. Soc, Chicago, Vol. 18, 1968, pp. 105–113. Nonlinear Functional Analysis, American Mathematical Society, Providence, RI; 1970.
  • L. Gawarecki and V. Mandrekar, Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations, Probability and its Applications. Springer, 2011.
  • B. Gess and J.M. Tölle, Stability of solutions to stochastic partial differential equations, Int. J. Differ. Equ. 260(6) (2016), pp. 4973–5025. https://doi.org/10.1016/j.jde.2015.11.039
  • E. Guerrero and J.A. López-Mimbela, Perpetual integral functionals of Brownian motion and blowup of semilinear systems of SPDEs, Commun. Stoch. Anal. 11(3) (2017), pp. 335–356. http://doi.org/10.31390/cosa.11.3.05
  • E. Guerrero and J.A. López-Mimbela, Pointwise eigenfunction estimates and mean Lp-norm blowup of a system of semilinear SPDEs with symmetric Lévy generators, Stat. Probab. Lett. 149 (2019), pp. 47–54. https://doi.org/10.1016/j.spl.2019.01.015
  • I. Gyöngy and C. Rovira, On Lp- solution of semilinear stochastic partial differential equations, Stoch. Process. Appl. 90(1) (2000), pp. 83–108. https://doi.org/10.1016/S0304-4149(00)00033-8
  • M. Jeanblanc, J. Pitman, and M. Yor, The Feynman–Kac formula and decomposition of Brownian paths, Comput. Appl. Math. 16 (1997), pp. 27–52.
  • S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Commun. Pure. Appl. Math.16(3) (1963), pp. 305–330. https://doi.org/10.1002/cpa.3160160307
  • F.C. Klebaner, Introduction to Stochastic Calculus with Applications, 3rd ed., Imperial Collage Press, London, 2012.
  • E.T. Kolkovska and J.A. López-Mimbela, Sub- and super-solution of a nonlinear PDE and application to semilinear SPDE, Pliska Stud. Math. Bulgar 22 (2013), pp. 109–116.
  • M. Li and H. Gao, Estimates of blow-up times of a system of semilinear SPDEs, Math. Methods Appl. Sci. 40(11) (2017), pp. 4149–4159. https://doi.org/10.1002/mma.4294
  • M. Liao, Precise decay rates of global solutions and an explicit upper bound of the blow-up time to a pseudo-parabolic equation, Math. Meth. Appl. Sci. 44(11) (2021), pp. 9393–9406. https://doi.org/10.1002/mma.7367.
  • G. Lv and J. Duan, Impacts of noise on a class of partial differential equations, J. Diff. Equ. 258(6) (2015), pp. 2196–2220. https://doi.org/10.1016/j.jde.2014.12.002.
  • H. Matsumoto and M. Yor, Exponential functionals of Brownian motion, I: probability laws at fixed time, Probab. Surv. 2 (2005), pp. 312–347. https://doi.org/10.1214/154957805100000159.
  • M. Niu and B. Xie, Impacts of Gaussian noises on the blow-up times of nonlinear stochastic partial differential equations, Nonlinear Anal. Real World Appl. 13(3) (2012), pp. 1346–1352. https://doi.org/10.1016/j.nonrwa.2011.10.011.
  • A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences. Vol. 44. Springer-Verlag, New York, 1983.
  • S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise, Cambridge University Press, Cambridge, New York, 2007.
  • D. Revuz and M. Yor, Continuous martingales and brownian motion, Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin, 1999.
  • G. Sathishkumar, L. Shangerganesh, and S. Karthikeyan, Lower bounds for the finite-time blow-up of solutions of a cancer invasion model, Electron. J. Qual. Theory Differ. Equ. 12 (2019), pp. 1–13. https://doi.org/10.14232/ejqtde.2019.1.12.
  • G. Sathishkumar, L. Shangerganesh, and S. Karthikeyan, Lower bounds of finite-time blow-up of solutions to a two-species Keller-Segel chemotaxis model, J. Appl. Nonlinear Dyn. 10(1) (2021), pp. 81–93. http://doi.org/10.5890/jand.2021.03.005
  • L. Shangerganesh, N. Nyamoradi, G. Sathishkumar, and S. Karthikeyan, Finite-time blow-up of solutions to a cancer invasion mathematical model with haptotaxis effects, Comput. Math. Appl. 77(8) (2019), pp. 2242–2254. https://doi.org/10.1016/j.camwa.2018.12.001.
  • X. Wang, Blow-up solutions of the stochastic nonlocal heat equations, Stoch. Dyn. 18(03) (2018), pp. 1850016. https://doi.org/10.1142/S021949371950014X
  • M. Yor, On some exponential functionals of Brownian motion, Adv. Appl. Prob. 24(3) (1992), pp. 509–531. https://doi.org/10.2307/1427477.
  • M. Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.