312
Views
2
CrossRef citations to date
0
Altmetric
Articles

Propulsion and photovoltaic charging system parameter computation for an all-electric boat

ORCID Icon, ORCID Icon & ORCID Icon
Pages 580-593 | Received 05 Oct 2022, Accepted 22 Mar 2023, Published online: 28 Mar 2023

References

  • Ahlstrand F, Lindbergh E. 2020. Methods to predict hull resistance in the process of designing electric boats. Stockholm, Sweden: KTH Royal Institute of Technology School of Engineering Sciences.
  • Aijjou A, Bahatti L, Raihani A. 2019. Influence of solar energy on ship energy efficiency: feeder container vessel as example. Int J Electr Energy. 7:1. doi:10.18178/ijoee.7.1.21-25.
  • Baso S, Bochary L, Hasbullah M, Anggriani ADE, Ardianti A. 2020. Investigating the performance characteristics of a semi-planing ship hull at high speed. IOP Conference Series: Materials Science and Engineering; IOP Publishing.
  • Beatrice C, Capasso C, Costa M, Di Blasio G, Di Luca G, Iantorno F, Martoriello G. 2022. Model based optimal management of a hybrid propulsion system for leisure boats. J Energy Storage. 46:103896. doi:10.1016/j.est.2021.103896.
  • Bertorello C, Oliviero L. 2007. Hydrodynamic resistance assessment of non-monohedral planing hull forms based on savitsky’s methodology. Aust J Mech Eng. 4(2):209–223. doi:10.1080/14484846.2007.11464527.
  • Chai T, Draxler RR. 2014. Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geoscientific Model Dev. 7(3):1247–1250. doi:10.5194/gmd-7-1247-2014.
  • Daud MZ, Kin KZ, Norbakyah J, Salisa A. 2015. An optimal electric machine control system design used in plug-in hybrid electric boat. ARPN J Eng Appl Sci. 10(22):10703–10708.
  • Deniz E, Atik K. 2007. Coğrafik ve meteorolojik veriler kullanılarak Zonguldak’ta güneş ışınım şiddetinin tahmini için bir çalışma (Article in Turkish). Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 12(2):35–42.
  • DNV. 2022. EEXI – Energy Efficiency Existing Ship Index. https://www.dnv.com/maritime/insights/topics/eexi/calculation.html (accessed February 22, 2022).
  • Faber J, Hanayama S, Zhang S, Pereda P, Comer B, Hauerhof B, Kosaka H. 2020. ‘Fourth IMO GHG study 2020—Final report. https://greenvoyage2050.imo.org/wp-content/uploads/2021/07/Fourth-IMO-GHG-Study-2020-Full-report-and-annexes_compressed.pdf (accessed February 22, 2022).
  • Gaber M, El-Banna SH, El-Dabah M, Hamad MS. 2021. Intelligent energy management system for an all-electric ship based on adaptive neuro-fuzzy inference system. Eng Rep. 7:7989–7998. doi:10.1016/j.egyr.2021.06.054.
  • Gerr D. 2008. Boat mechanical systems handbook. London: International Marine/Ragged Mountain Press.
  • Goksu B, Yuksel O, Bayraktar M. 2022. Determination of navigation speeds in a planing hull model using the optimum power calculation: a case study for a training boat. 2nd Global Conference on Engineering Research, Volume: Proceeding, pp 134-144.
  • Gul M, Celik E, Aydin N, Gumus AT, Guneri AF. 2016. A state of the art literature review of VIKOR and its fuzzy extensions on applications. Appl Soft Comput. 46:60–89. doi:10.1016/j.asoc.2016.04.040.
  • Hassan G, Su YM. 2008. Determining the hydrodynamic forces on a planing hull in steady motion. J Mar Sci Appl. 7(3):147–156. doi:10.1007/s11804-008-7057-1.
  • Hein K, Xu Y, Wilson G, Gupta AK. 2020. Coordinated optimal voyage planning and energy management of all-electric ship with hybrid energy storage system. IEEE Trans Power Syst. 36(3):2355–2365. doi:10.1109/TPWRS.2020.3029331.
  • Hou J, Sun J, Hofmann H. 2018. Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems. Appl Energy. 212:919–930. doi:10.1016/j.apenergy.2017.12.098.
  • Ivanova G. 2021. Analysis of the specifics in calculating the index of existing marine energy efficiency EEXI in force since 2023. 2021 13th Electrical Engineering Faculty Conference (BulEF) (pp. 1-4); IEEE.
  • Jahan A, Mustapha F, Ismail MY, Sapuan SM, Bahraminasab M. 2011. A comprehensive VIKOR method for material selection. Mater Des. 32(3):1215–1221. doi:10.1016/j.matdes.2010.10.015.
  • JNGE. 2022. MPPT solar charge controller. https://www.hfjnge.com/24v-48v-96v-120v-192v-216v-240v-360v-384v-480v-584vhigh-voltage-mppt-solar-charge-controller_p107.html (accessed January 12, 2023).
  • Kasuya E. 2019. On the use of r and r squared in correlation and regression (Vol. 34, No. 1, pp. 235-236). Hoboken, USA: John Wiley & Sons, Inc.
  • Khair U, Fahmi H, Al Hakim S, Rahim R. 2017. Forecasting error calculation with mean absolute deviation and mean absolute percentage error. J Phys: Conf Ser. 930(1):012002. IOP Publishing. doi:10.1088/1742-6596/930/1/012002.
  • Khalid A, Sarwat AI. 2021. Unified univariate-neural network models for lithium-ion battery state-of-charge forecasting using minimized akaike information criterion algorithm. IEEE Access. 9:39154–39170. doi:10.1109/ACCESS.2021.3061478.
  • Kirchgässner G, Wolters J. 2007. Introduction to modern time series analysis. Berlin: Springer Science & Business Media.
  • Konur O, Yuksel O, Korkmaz SA, Colpan CO, Saatcioglu OY, Muslu I. 2022. Thermal design and analysis of an organic rankine cycle system utilizing the main engine and cargo oil pump turbine based waste heats in a large tanker ship. J Cleaner Prod. 368:133230. doi:10.1016/j.jclepro.2022.133230.
  • Kriegeskorte N. 2015. Crossvalidation in brain imaging analysis. In: Toga W. A., editor. Brain mapping. London: Academic Press; p. 635–639.
  • Ku HK, Park CH, Kim JM. 2022. Full simulation modeling of All-electric ship with medium voltage DC power system. Energies. 15(12):4184. doi:10.3390/en15124184.
  • Kukner A, Yasa AM. 2011. High speed planing hulls resistance prediction methods and comparison. 1st International Symposium on Naval Architecture and Maritime, Volume: Proceeding, pp 201-208.
  • Lovibond O, Elbarghthi AF, Dvorak V, Wen C. 2023. Numerical analysis of propellers for electric boats using computational fluid dynamics modelling. Energy Convers Manage. X:100349. doi:10.1016/j.ecmx.2023.100349.
  • Lu R, Turan O, Boulougouris E, Banks C, Incecik A. 2015. A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping. Ocean Eng. 110:18–28. doi:10.1016/j.oceaneng.2015.07.042.
  • MGM. 2022. Electric Motors, https://www.mgm-compro.com/electric-motors/ (accessed August 05, 2022).
  • Mills TC. 2019. Applied time series analysis: a practical guide to modeling and forecasting. London: Academic Press.
  • Mira JD, Mendoza F, Betancur E, Manrique T, Mejía-Gutiérrez R. 2021. A propulsion system design methodology based on overall efficiency optimization for electrically powered vessels. IEEE Trans Transp Electrification. 8(1):239–250. doi:10.1109/TTE.2021.3104763.
  • Omar N, Monem MA, Firouz Y, Salminen J, Smekens J, Hegazy O, Gaulous H, Mulder G, Van den Bossche P, Coosemans T, Van Mierlo J. 2014. Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model. Appl Energy. 113:1575–1585. doi:10.1016/j.apenergy.2013.09.003.
  • Opricovic S, Tzeng GH. 2004. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res. 156(2):445–455. doi:10.1016/S0377-2217(03)00020-1.
  • Ovrum E, Bergh TF. 2015. Modelling lithium-ion battery hybrid ship crane operation. Appl Energy. 152:162–172. doi:10.1016/j.apenergy.2015.01.066.
  • Panasonic. 2021. Specification for NCR18650GA. https://birikimpilleri.net/Resim/900095503030_1.pdf (accessed June 7, 2022).
  • Park C, Jeong B, Zhou P, Jang H, Kim S, Jeon H, Nam D, Rashedi A. 2022. Live-Life cycle assessment of the electric propulsion ship using solar PV. Appl Energy. 309:118477. doi:10.1016/j.apenergy.2021.118477.
  • Radojcic D, Zgradic A, Kalajdzic M, Simic A. 2014. Resistance prediction for hard chine hulls in the pre-planing regime. Pol Marit Res. doi:10.2478/pomr-2014-0014.
  • Reabroy R, Tiaple Y, Pongduang S, Nantawong T, Iamraksa P. 2015. The possibility of using electrical motor for boat propulsion system. Energy Procedia. 79:1008–1014. doi:10.1016/j.egypro.2015.11.601.
  • ResmiGazete. 2022. Gün Öncesi Piyasasında ve Dengeleme Güç Piyasasında Asgari ve Azami Fiyat Limitlerinin Berlirlenmesine İlişkin Usul ve Esaslarda Değişiklik Yapılmasına Dair Usul ve Esaslar. https://www.resmigazete.gov.tr/eskiler/2021/02/20210209.pdf (accessed September 27, 2022).
  • Roh MI. 2013. Determination of an economical shipping route considering the effects of sea state for lower fuel consumption. Int J Naval Archit Ocean Eng. 5(2):246–262. doi:10.2478/ijnaoe-2013-0130.
  • Rutherford D, Mao X, Comer B. 2020. Potential CO2 reductions under the energy efficiency existing ship index. International council on clean transportation. Working paper, 2020-27.
  • Saxena S, Hendricks C, Pecht M. 2016. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. J Power Sources. 327:394–400. doi:10.1016/j.jpowsour.2016.07.057.
  • Sepasi S, Ghorbani R, Liaw BY. 2015. Inline state of health estimation of lithium-ion batteries using state of charge calculation. J Power Sources. 299:246–254. doi:10.1016/j.jpowsour.2015.08.091.
  • Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J. 27(3):379–423.
  • Shu G, Liu P, Tian H, Wang X, Jing D. 2017. Operational profile based thermaleconomic analysis on an organic rankine cycle using for harvesting marine engine’s exhaust waste heat. Eng Convers Manag. 146:107–123. doi:10.1016/J.ENCONMAN.2017.04.099.
  • SMA. 2021. Sunny Central Storage. https://www.sma.de/en/products/battery-inverters/sunny-central-storage-1900-2200-2475-2900.html (accessed 21, June 2021).
  • Smith TW, Jalkanen JP, Anderson BA, Corbett JJ, Faber J, Hanayama S, O’keeffe E, Parker S, Johansson L, Aldous L, Raucci C. 2015. Third IMO greenhouse gas study 2014. https://greenvoyage2050.imo.org/wp-content/uploads/2021/01/third-imo-ghg-study-2014-executive-summary-and-final-report.pdf. (accessed 21, September 2022).
  • Spagnolo GS, Papalillo D, Martocchia A, Makary G. 2012. Solar-electric boat. J Transp Technol. 2(2):144–149.
  • Sreedevi ML, Joseph SC, Ajlif AM, Jayan PP, Dhanesh PR, Mineeshma GR, Chacko RV. 2022, January. Electric propulsion system powertrain estimation for houseboats using backward simulation. 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE) (pp. 1-6); IEEE.
  • Tian Z, Zeng W, Gu B, Zhang Y, Yuan X. 2021. Energy, exergy, and economic (3E) analysis of an organic rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy. Eng Convers Manag. 228:113657. doi:10.1016/j.enconman.2020.113657.
  • Tommatech. 2022. TommaTech 460 w Watt 144PM M6 Half Cut Multibusbar Güneş Paneli Solar Panel Monokristal, https://www.gunesdukkan.com/gunes-paneli/tommatech-460-w-watt-144pm-m6-half-cut-multibusbar-gunes-paneli-solar-panel-monokristal(accessed August 05, 2022).
  • Villacreses G, Salinas SS, Ortiz WD, Villacís S, Martínez-Gómez J, Narváez C,RA. 2017. Environmental impact assessment of internal combustion and electric engines for maritime transport. Environ Processes. 4(4):907–922. doi:10.1007/s40710-017-0270-7.
  • Xiros NI, Tzelepis V, Loghis EK. 2019. Modeling and simulation of planing-hull watercraft outfitted with an electric motor drive and a surface-piercing propeller. J Mar Sci Eng. 7(2):49. doi:10.3390/jmse7020049.
  • Yang MH, Yeh RH. 2018. The effects of composition ratios and pressure drops of R245fa/R236fa mixtures on the performance of an organic rankine cycle system for waste heat recovery. Eng Convers Manag. 175:313–326. doi:10.1016/J.ENCONMAN.2018.09.006.
  • Yousefi R, Shafaghat R, Shakeri M. 2013. Hydrodynamic analysis techniques for high-speed planing hulls. Appl Ocean Res. 42:105–113. doi:10.1016/j.apor.2013.05.004.
  • Yuksel O, Koseoglu B. 2023. Numerical simulation of the hybrid ship power distribution system and an analysis of its emission reduction potential. Ships Offsh Struct. 18(1):78–94. doi:10.1080/17445302.2022.2028435.
  • Zou ZH, Yi Y, Sun JN. 2006. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci. 18(5):1020–1023. doi:10.1016/S1001-0742(06)60032-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.