326
Views
1
CrossRef citations to date
0
Altmetric
Articles

An investigation of the cooling, heating and power systems integration with carbon capture and storage for LNG carriers

ORCID Icon & ORCID Icon
Pages 610-624 | Received 09 Aug 2022, Accepted 22 Mar 2023, Published online: 28 Mar 2023

References

  • Akman M, Ergin S. 2021. Thermo-environmental analysis and performance optimisation of transcritical organic Rankine cycle system for waste heat recovery of a marine diesel engine. Ships Offshore Struct. 16(10):1104–1113. doi:10.1080/17445302.2020.1816744.
  • Aspentech Inc. 2015. Aspen HYSYS V8.8.
  • Awoyomi A, Patchigolla K, Anthony EJ. 2019. CO2/SO2 emission reduction in CO2 shipping infrastructure. Int J Greenh Gas Contr. 88:57–70.
  • Baral S. 2021. Thermodynamic and financial assessment of concentrated solar power plant hybridized with biomass-based organic Rankine cycle, thermal energy storage, hot springs and CO2 capture systems. Int J Low Carbon Technol. 16(2):361–375. doi:10.1093/ijlct/ctaa069.
  • Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernández JR, Ferrari M-C, Gross R, Hallett JP. 2014. Carbon capture and storage update. Environ Energy Sci. 7(1):130–189.
  • Bravo L, Rocha JA, Fair JR. 1985. Mass transfer in gauze packings. Hydrocarb Process. 64(1):91–95.
  • Bureau Veritas. 2021. Rules for the classification of steel ships, part C-machinery, electricity, automation and fire protection.
  • Costa AN, Neves MVS, Cruz ME, Vieira LS. 2011. Maximum profit cogeneration plant - MPCP: system modeling, optimization problem formulation, and solution. J Braz Soc Mech Sci Eng. 33(1):58–66. doi:10.1590/S1678-58782011000100009.
  • Dincer I, Demir ME. 2018. Steam and organic rankine cycles. Compr Energy Syst. doi:10.1016/B978-0-12-809597-3.00410-7.
  • Douglas JM. 1988. Conceptual design of chemical processes. New York: McGraw-Hill.
  • Dynagas LNG Partners LP. 2018. Investor presentation.
  • Einbu A, Pettersen T, Morud J, Tobiesen A, Jayarathna CK, Skagestad R, Nysæther G. 2022. Energy assessments of onboard CO2 capture from ship engines by MEA-based post combustion capture system with flue gas heat integration. Int J Greenh Gas Contr. 113:103526. doi:10.1016/j.ijggc.2021.103526.
  • Fakheri A. 2003. A general expression for the determination of the log mean temperature correction factor for shell and tube heat exchangers. J Heat Transfer. 125(3):527–530. doi:10.1115/1.1571078.
  • Feenstra M, Monteiro J, van den Akker JT, Abu-Zahra MRM, Gilling E, Goetheer E. 2019. Ship-based carbon capture onboard of diesel or LNG-fuelled ships. Int J Greenh Gas Contr. 85:1–10.
  • Ganjehkaviri A, Jaafar MNM. 2014. Energy analysis and multi-objective optimization of an internal combustion engine-based CHP system for heat recovery. Entropy . 16(11):5633–5653. doi:10.3390/e16115633.
  • Ghaffari A, Ahmadi R, Eyvazkhani M. 2020. Modeling and optimization of finless and finned tube heat recovery steam generators for cogeneration plants. Eng Rep. 2(11):1–22. doi:10.1002/eng2.12262.
  • Güler E, Ergin S. 2021a. An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships. Int J Greenh Gas Contr. 110. doi:10.1016/j.ijggc.2021.103438
  • Güler E, Ergin S. 2021b. The effects of different solvents on the performance of carbon capture and storage (CCS) systems for different ships, in: 34th Asian-Pacific Technical Exchange and Advisory Meetings on Marine Structures (TEAM 2020/21).
  • Hackl R, Harvey S. 2013. Identification, cost estimation and economic performance of common heat recovery systems for the chemical cluster in Stenungsund.
  • Hewitt GF, Pugh SJ. 2007. Approximate design and costing methods for heat exchangers. Heat Transf Eng. 28(2):76–86.
  • Holland JH. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge.
  • Ji C, Yuan S, Huffman M, El-Halwagi MM, Wang Q. 2021. Post-combustion carbon capture for tank to propeller via process modeling and simulation. J CO2 Util. 51:101655. doi:10.1016/j.jcou.2021.101655.
  • Jinyue Y. 2015. Carbon capture and storage (CCS). Appl Energy. 148:A1–A6.
  • Lee J, Cho J. 2020. Liquefaction process using LNG cold heat. Trans Korean Hydrog New Energy Soc. 31(2):259–264.
  • Lee S, Yoo S, Park H, Ahn J, Chang D. 2021. Novel methodology for EEDI calculation considering onboard carbon capture and storage system. Int J Greenh Gas Contr. 105(January):103241. doi:10.1016/j.ijggc.2020.103241.
  • Livanos GA, Theotokatos G, Pagonis D-N. 2014. Techno-economic investigation of alternative propulsion plants for Ferries and RoRo ships. Energy Convers Manag. 79:640–651.
  • Long NVD, Lee DY, Kwag C, Lee YM, Lee SW, Hessel V, Lee M. 2021. Improvement of marine carbon capture onboard diesel fueled ships. Chem Eng Process Process Intensif. 168(June):108535. doi:10.1016/j.cep.2021.108535.
  • Luo X, Wang M. 2017. Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Appl Energy. 195:402–413.
  • MAN Diesel & Turbo. 2014. Propulsion trends in LNG carriers. Two-stroke Engines. doi:10.1016/j.jbiotec.2014.06.034.
  • MAN Energy Solutions. 2021. CEAS engine calculations. https://www.man-es.com/marine/products/planning-tools-and-downloads/ceas-engine-calculations.
  • Nordin A, Majid MAA. 2016. Parametric study on the effects of pinch and approach points on heat recovery steam generator performance at a district cooling system. J Mech Eng Sci. 10(2):2134–2144. doi:10.15282/jmes.10.2.2016.17.0201.
  • Novotony T. 2019. LNG shipping economics. https://seekingalpha.com/article/4223891-lng-shipping-economics (accessed 11 March 2022).
  • Oh J, Anantharaman R, Zahid U, Lee PS, Lim Y. 2022. Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships. Sep Purif Technol. 282. doi:10.1016/j.seppur.2021.120052
  • Øi LE. 2007. Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant, in: The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007); 30-31 October; 2007; Göteborg (Särö). Linköping University Electronic Press, pp. 73–81.
  • Park SH, Lee YD, Ahn KY. 2014. Performance analysis of an SOFC/HCCI engine hybrid system: system simulation and thermo-economic comparison. Int J Hydrogen Energy. 39(4):1799–1810. doi:10.1016/j.ijhydene.2013.10.171.
  • Peng D, Robinson DB. 1976. A new two-constant equation of state. Ind Eng Chem Fundam. 15(1):59–64.
  • Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A. 2011. Aqueous piperazine as the new standard for CO2 capture technology. Chem. Eng. J. 171(3):725–733. doi:10.1016/j.cej.2011.02.011.
  • Romeo LM, Lara Y, González A. 2011. Reducing energy penalties in carbon capture with Organic Rankine Cycles. Appl Therm Eng. 31(14–15):2928–2935. doi:10.1016/j.applthermaleng.2011.05.022.
  • Senary K, Tawfik A, Hegazy E, Ali A. 2016. Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations. Alexandr Eng J. 55(3):1951–1960. doi:10.1016/j.aej.2016.07.027.
  • Seo Y, You H, Lee S, Huh C, Chang D. 2015. Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability. Int J Greenh Gas Contr. 35:1–12. doi:10.1016/j.ijggc.2015.01.006
  • Shin Y, Pyo Y. 2009. Design of a boil-off natural gas reliquefaction control system for LNG carriers. Appl Energy. 86:37–44. doi:10.1016/j.apenergy.2008.03.019.
  • Shirmohammadi R, Aslani A, Ghasempour R, Romeo LM, Petrakopoulou F. 2021. Process design and thermoeconomic evaluation of a CO2 liquefaction process driven by waste exhaust heat recovery for an industrial CO2 capture and utilization plant. J Therm Anal Calorim. 145(3):1585–1597. doi:10.1007/s10973-021-10833-z.
  • Sinnott RAY. 2014. Chemical engineering design. Elsevier, Oxford.
  • Stec M, Tatarczuk A, Iluk T, Szul M. 2021. Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. Int J Greenh Gas Contr. 108(April):103333. doi:10.1016/j.ijggc.2021.103333.
  • Todd FH. 1963. Series 60 methodical experiments with models of single-screw merchant ships.
  • Tola V, Finkenrath M. 2015. Performance evaluation of an organic rankine cycle fed by waste heat recovered from CO2. Capt Sect. 18(4):225–233. doi:10.5541/ijot.
  • Tong D, Maitland GC, Trusler MJP, Fennell PS. 2013. Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and piperazine. Chem Eng Sci. 101:851–864. doi:10.1016/j.ces.2013.05.034.
  • Trading Economics. 2022. EU carbon permits. https://tradingeconomics.com/commodity/carbon (accessed 6 September 2022).
  • UCAR High Altitude Observatory. 1998. PIKAIA. https://www.hao.ucar.edu/modeling/pikaia/pikaia.php#sec2 (accessed 13 March 2022).
  • U. S. Environmental Protection Agency Combined Heat and Power Partnership. 2015. Catalog of CHP technologies: section 4. Technology characterization – steam turbines.
  • Vega F, Cano M, Camino S, Fenandez LMG, Portillo E, Navarrate B. 2018. Solvents for carbon dioxide capture. In: Carbon dioxide chemistry, capture and oil recovery. Intechopen; p. 142–163. doi:10.5772/intechopen.71443
  • Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. 2011. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 89(9):1609–1624.
  • Xi H, Li MJ, Xu C, He YL. 2013. Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm. Energy. 58(September):473–482. doi:10.1016/j.energy.2013.06.039.
  • Zhang L, Pan Z, Shang L, Dong L. 2018. Thermo-economic analysis of organic rankine cycle (ORC) with CO2 capture system for coal-fired power plant waste heat recovery. Int J Energy Clean Environ. 19(3–4):303–322. doi:10.1615/InterJEnerCleanEnv.2018025381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.