127
Views
0
CrossRef citations to date
0
Altmetric
Articles

Semi-analytical study of linear waves interaction with a vertical permeable cylinder of arbitrary cross-section based on perturbation theory

ORCID Icon &
Pages 654-669 | Received 16 Nov 2022, Accepted 03 Apr 2023, Published online: 13 Apr 2023

References

  • Bi CW, Zhao YP, Dong GH. 2015. Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage. China Ocean Eng. 29(3):401–414. doi:10.1007/s13344-015-0028-9.
  • Chen JT, Lee YT, Lin YJ. 2009. Interaction of water waves with vertical cylinders using null-field integral equations. Appl Ocean Res. 31(2):101–110. doi:10.1016/j.apor.2009.06.004.
  • Chen JT, Wu CF, Lee JW, Hsiao YC. 2011. Analysis of water wave problems containing single and multiple cylinders by using degenerate kernel method. Int J Offshore Polar Eng. 21(1):13–21. https://onepetro.org/IJOPE/article-abstract/35665/Analysis-of-Water-Wave-Problems-Containing-Single.
  • Chen JT, Yueh CY, Chang YL, Wen CC. 2017. Why dual boundary element method is necessary? Eng Anal Bound Elem. 76:59–68. doi:10.1016/j.enganabound.2016.11.011.
  • Dişibüyük NB, Korobkin AA, Yilmaz O. 2017. Linear wave interaction with a vertical cylinder of arbitrary cross section: an asymptotic approach. J Waterw Port Coast Ocean Eng. 143(5):04017028. https://ascelibrary.org/doi/full/10.1061%28ASCE%29WW.1943-5460.0000407.
  • FAO. 2020. The state of world fisheries and aquaculture (Sofia): The state of world fisheries and aquaculture 2020: sustainability in action. Rome. ISBN: 978-92-5-132692-3. https://www.fao.org/3/ca9229en/ca9229en.pdf.
  • Fu Z, Chen W, Wen P, Zhang C. 2018. Singular boundary method for wave propagation analysis in periodic structures. J Sound Vib. 425:170–188. doi:10.1016/j.jsv.2018.04.005.
  • Fu Z, Xi Q, Gu Y, Li J, Qu W, Sun L, Wei X, Wang F, Lin J, Li W, et al. 2023. Singular boundary method: a review and computer implementation aspects. Eng Anal Bound Elem. 147:231–266. doi:10.1016/j.enganabound.2022.12.004.
  • Fu ZJ, Xie ZY, Ji SY, Tsai CC, Li AL. 2020. Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Eng. 195:106736. doi:10.1016/j.oceaneng.2019.106736.
  • Garrett CJR. 1970. Bottomless harbours. J Fluid Mech. 43(3):433–449. doi:10.1017/S0022112070002495.
  • Ghalayini SA, Williams AN. 1989. Nonlinear wave forces on vertical cylinders of arbitrary cross section. J Waterw Port Coast Ocean Eng. 115(6):809–830. doi:10.1061/(ASCE)0733-950X(1989)115:6(809).
  • Gharechae A, Ketabdari MJ. 2020. Semi-analytical study on regular sea wave interaction with circular elastic floaters of aquaculture fish cages. Aquac Eng. 91:102125. doi:10.1016/j.aquaeng.2020.102125.
  • Gharechae A, Ketabdari MJ. 2022. Analytical solution based on BEM to oblique waves scattering by thin arc-shaped permeable barrier applied for array of aquaculture cages. Eng Anal Bound Elem. 134:241–258. doi:10.1016/j.enganabound.2021.10.004.
  • Gharechae A, Negahdari MR. 2022. Semi-analytical study of the first order horizontal force induced by oblique waves on the array of circular columns of offshore wind turbines equipped with permeable cylinders. Ocean Eng. 261:112043. doi:10.1016/j.oceaneng.2022.112043.
  • Gradshteyn IS, Ryzhik IM. 2014. Table of integrals, series, and products. 8th ed. Academic Press is an imprint of Elsevier. doi:10.1016/C2010-0-64839-5.
  • Gutiérrez-Romero JE, Lorente-López AJ, Zamora-Parra B. 2020. Numerical analysis of fish farm behaviour in real operational conditions. Ships Offsh Struct. 15(7):737–752. doi:10.1080/17445302.2019.1671674.
  • Ji CY, Bian XQ, Cheng Y, Yang K. 2019. Experimental study of hydrodynamic performance for double-row rectangular floating breakwaters with porous plates. Ships Offsh Struct. 14(7):737–746. doi:10.1080/17445302.2018.1558521.
  • Liu J, Guo A, Li H. 2016. Analytical solution for the linear wave diffraction by a uniform vertical cylinder with an arbitrary smooth cross-section. Ocean Eng. 126:163–175. doi:10.1016/j.oceaneng.2016.09.010.
  • Liu J, Guo A, Nandasena N, Melville BW, Li H. 2018. Theoretical and experimental investigation on wave interaction with a concentric porous cylinder form of breakwater. Ocean Eng. 160:156–167. doi:10.1016/j.oceaneng.2018.04.050.
  • Liu J, Lin G. 2013. Numerical modelling of wave interaction with a concentric cylindrical system with an arc-shaped porous outer cylinder. Eur J Mech B/Fluids. 37:59–71. doi:10.1016/j.euromechflu.2012.07.005.
  • Liu J, Xiao L, Yang L, Li J, Kou Y. 2022. Benchmark experimental study on wave run-ups of fixed four-rounded-square-column array in regular waves. J Ocean Eng Sci. 7(5):419–430. doi:10.1016/j.joes.2021.09.016.
  • Ma M, Zhang H, Jeng DS, Wang CM. 2022. Analytical solutions of hydroelastic interactions between waves and submerged open-net fish cage modeled as a porous cylindrical thin shell. Phys Fluids. 34(1):017104. doi:10.1063/5.0076659.
  • Mackay E, Shi W, Qiao D, Gabl R, Davey T, Ning D, Johanning L. 2021. Numerical and experimental modelling of wave interaction with fixed and floating porous cylinders. Ocean Eng. 242:110118. doi:10.1016/j.oceaneng.2021.110118.
  • Mavrakos SA. 1985. Wave loads on a stationary floating bottomless cylindrical body with finite wall thickness. Appl Ocean Res. 7(4):213–224. doi:10.1016/0141-1187(85)90028-8.
  • Mavrakos SA. 1988. Hydrodynamic coefficients for a thick-walled bottomless cylindrical body floating in water of finite depth. Ocean Eng. 15(3):213–229. doi:10.1016/0029-8018(88)90040-6.
  • Meng XN, Zou ZJ. 2012. Wave interaction with a uniform porous cylinder of arbitrary shape. Ocean Eng. 44:90–99. doi:10.1016/j.oceaneng.2012.01.025.
  • Moghadaszadeh SO, Khaji N. 2015. Development and application of a semi-analytical method with diagonal coefficient matrices for analysis of wave diffraction around vertical cylinders of arbitrary cross-sections. Ocean Eng. 110:292–302. doi:10.1016/j.oceaneng.2015.10.023.
  • Mogridge GR, Jamieson WW. 1976. Wave forces on square caissons. In: Coastal engineering 1976. p. 2271–2289. doi:10.1061/9780872620834.133.
  • Patursson Ø, Swift MR, Tsukrov I, Simonsen K, Baldwin K, Fredriksson DW, Celikkol B. 2010. Development of a porous media model with application to flow through and around a net panel. Ocean Eng. 37(2-3):314–324. doi:10.1016/j.oceaneng.2009.10.001.
  • Poguluri SK, Cho IH. 2021. Analytical and numerical study of wave interaction with a vertical slotted barrier. Ships Offsh Struct. 16(9):1012–1024. doi:10.1080/17445302.2020.1790299.
  • Praveen KM, Venkateswarlu V, Karmakar D. 2022. Hydroelastic response of floating elastic plate in the presence of vertical porous barriers. Ships Offsh Struct. 17(2):457–471. doi:10.1080/17445302.2020.1835050.
  • Razafizana Z, Fu ZJ. 2015. Singular boundary method for water wave problems. Ocean Eng. 96:330–337. doi:10.1016/j.oceaneng.2014.12.008.
  • Sahoo H, Gayathri R, Khan MB, Behera H. 2022. Hybrid boundary element and eigenfunction expansion method for wave trapping by a floating porous box near a rigid wall. Ships Offsh Struct. 1–11. doi:10.1080/17445302.2022.2108227.
  • Sarkar A, Bora SN. 2019. Hydrodynamic forces due to water wave interaction with a bottom-mounted surface-piercing compound porous cylinder. Ocean Eng. 171:59–70. doi:10.1016/j.oceaneng.2018.10.019.
  • Sarkar A, Bora SN. 2020. Hydrodynamic coefficients for a floating semi-porous compound cylinder in finite ocean depth. Mar Syst Ocean Technol. 15(4):270–285. doi:10.1007/s40868-020-00086-0.
  • Sasmal A, De S. 2022. Energy dissipation and oblique wave diffraction by three asymmetrically arranged porous barriers. Ships Offsh Struct. 17(1):105–115. doi:10.1080/17445302.2020.1816783.
  • Silva R, Govaere G, Salles P. 2003. Wave interaction with cylindrical porous piles. Ocean Eng. 30(14):1719–1740. doi:10.1016/S0029-8018(03)00012-X.
  • Song H, Tao L. 2007. Short-crested wave interaction with a concentric porous cylindrical structure. Appl Ocean Res. 29(4):199–209. doi:10.1016/j.apor.2008.01.001.
  • Song H, Tao L, Chakrabarti S. 2010. Modelling of water wave interaction with multiple cylinders of arbitrary shape. J Comput Phys. 229(5):1498–1513. doi:10.1016/j.jcp.2009.10.041.
  • Venkateswarlu V, Karmakar D. 2020. Wave transformation due to barrier-rock porous structure placed on step-bottom. Ships Offsh Struct. 15(8):895–909. doi:10.1080/17445302.2019.1694296.
  • Venkateswarlu V, Praveen KM, Vijay KG, Anil K, Karmakar D. 2022. Oblique wave interaction with a two-layer pile-rock breakwater placed on elevated bottom. Ships Offsh Struct. 17(4):852–865. doi:10.1080/17445302.2021.1880183.
  • Vijay KG, He SY, Zhao Y, Liu Y, Sahoo T. 2020. Gravity wave interaction with a submerged wavy porous plate. Ships Offsh Struct. 15(sup1):S123–S133. doi:10.1080/17445302.2020.1789034.
  • Williams AN, Li W. 2000. Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders. Ocean Eng. 27(8):841–866. doi:10.1016/S0029-8018(99)00004-9.
  • Xu TJ, Dong GH. 2018. Numerical simulation of the hydrodynamic behaviour of mussel farm in currents. Ships Offsh Struct. 13(8):835–846. doi:10.1080/17445302.2018.1465380.
  • Xu TJ, Wang S, Liu BJ, Dong GH, Qin XY. 2023. Numerical simulation of the wave interaction with mussel droppers. Ships Offsh Struct. 18(1):95–104. doi:10.1080/17445302.2022.2032987.
  • Yu H, Zheng S, Zhang Y, Iglesias G. 2019. Wave radiation from a truncated cylinder of arbitrary cross section. Ocean Eng. 173:519–530. doi:10.1016/j.oceaneng.2019.01.013.
  • Zhao F, Bao W, Kinoshita T, Itakura H. 2011. Theoretical and experimental study on a porous cylinder floating in waves. J Offshore Mech Arct Eng. 133(1):011301. doi:10.1115/1.4001435.
  • Zhao YP, Bi CW, Dong GH, Gui FK, Cui Y, Guan CT, Xu TJ. 2013. Numerical simulation of the flow around fishing plane nets using the porous media model. Ocean Eng. 62:25–37. doi:10.1016/j.oceaneng.2013.01.009.
  • Zhu S, Moule G. 1994. Numerical calculation of forces induced by short-crested waves on a vertical cylinder of arbitrary cross-section. Ocean Eng. 21(7):645–662. doi:10.1016/0029-8018(94)90043-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.