203
Views
0
CrossRef citations to date
0
Altmetric
Articles

A fuzzy Bayesian network risk assessment model for analyzing the causes of slow-down processes in two-stroke ship main engines

ORCID Icon, , &
Pages 670-686 | Received 03 Jul 2023, Accepted 23 Jan 2024, Published online: 03 Mar 2024

References

  • Antão P, Guedes Soares C. 2008. Causal factors in accidents of high-speed craft and conventional ocean-going vessels. Reliab Eng Syst Saf. 93:1292–1304. doi:10.1016/j.ress.2007.07.010.
  • Aulia R, Tan H, Sriramula S. 2021. Dynamic reliability analysis for residual life assessment of corroded subsea pipelines. Ships Offsh Struct. 16:410–422. doi:10.1080/17445302.2020.1735834.
  • Aydin M, Akyuz E, Turan O, Arslan O. 2021. Validation of risk analysis for ship collision in narrow waters by using fuzzy Bayesian networks approach. Ocean Eng. 231:108973. doi:10.1016/j.oceaneng.2021.108973.
  • Aydın M, Kamal B. 2022. A fuzzy-Bayesian approach on the bankruptcy of hanjin shipping. JEMS. 10:2–15. doi:10.4274/jems.2021.56689.
  • Babaleye AO, Kurt RE. 2020. Safety analysis of offshore decommissioning operation through Bayesian network. Ships Offsh Struct. 15:99–109. doi:10.1080/17445302.2019.1589041.
  • Bai X, Ling H, Luo X, Li Y, Yang L, Kang J. 2023. Reliability and availability evaluation on hydraulic system of ship controllable pitch propeller based on evidence theory and dynamic Bayesian network. Ocean Eng. 276:114125. doi:10.1016/j.oceaneng.2023.114125.
  • Bayazit O, Kaptan M. 2023. Evaluation of the risk of pollution caused by ship operations through bow-tie-based fuzzy Bayesian network. J Cleaner Prod. 382:135386. doi:10.1016/j.jclepro.2022.135386.
  • Bi Y, Wang S, Zhang C, Cong H, Gao W, Qu B, Li J. 2023. A Bayesian network-based safety assessment method for solid propellant granule-casting molding process. J Loss Prev Process Ind. 83:105089. doi:10.1016/j.jlp.2023.105089.
  • Celik M, Cebi S. 2009. Analytical HFACS for investigating human errors in shipping accidents. Accid Anal Prev. 41:66–75. doi:10.1016/j.aap.2008.09.004.
  • Chang Y-T, Park H. 2019. The impact of vessel speed reduction on port accidents. Accid Anal Prev. 123:422–432. doi:10.1016/j.aap.2016.03.003.
  • Chen P, Zhang Z, Huang Y, Dai L, Hu H. 2022. Risk assessment of marine accidents with Fuzzy Bayesian Networks and causal analysis. Ocean Coast Manag. 228:106323. doi:10.1016/j.ocecoaman.2022.106323.
  • Eleye-Datubo AG, Wall A, Wang J. 2008. Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm. Risk Anal. 28:95–112. doi:10.1111/j.1539-6924.2008.01004.x.
  • Erol S, Başar E. 2015. The analysis of ship accident occurred in Turkish search and rescue area by using decision tree. Marit Policy Manage. 42:377–388. doi:10.1080/03088839.2013.870357.
  • Fan H, Enshaei H, Jayasinghe SG. 2022a. Human error probability assessment for LNG bunkering based on fuzzy Bayesian network-CREAM model. J Mar Sci Eng. 10:333. doi:10.3390/jmse10030333.
  • Fan H, Enshaei H, Jayasinghe SG. 2022b. Dynamic quantitative risk assessment of LNG bunkering SIMOPs based on Bayesian network. J Ocean Eng Sci. 8. doi:10.1016/j.joes.2022.03.004.
  • Faulkner D. 2003. Shipping safety: a matter of concern. In: Proceedings-Institute of Marine Engineering Science and Technology Part B Journal of Marine Design and Operations. Vol. 5. London: Imarest Publications; p. 37–56.
  • Göksu B, Yüksel O, Şakar C. 2023. Risk assessment of the Ship steering gear failures using fuzzy-Bayesian networks. Ocean Eng. 274:114064. doi:10.1016/j.oceaneng.2023.114064.
  • Haruna A, Jiang P. 2022. Adaptability analysis of design for additive manufacturing by using fuzzy Bayesian network approach. Adv Eng Inf. 52:101613. doi:10.1016/j.aei.2022.101613.
  • Japan P&I Club. 2023. The Japan ship owners’mutual protection & indemnity association loss prevention and ship inspection department [WWW document]. P&I Loss Prevention Bulletin. URL https://www.piclub.or.jp/wp-content/uploads/2018/04/Loss-Prevention-Bulletin-Naiko-Class-Vol.4_Light_1.pdf.
  • Johansen TA, Perez T, Cristofaro A. 2016. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection With predictive hazard assessment. IEEE Trans Intell Transp Syst. 17:3407–3422. doi:10.1109/TITS.2016.2551780.
  • Kamal B. 2021. The Use of fuzzy-Bayes approach on the causal factors of empty container repositioning. Mar Technol Soc J. 55:20–38. doi:10.4031/MTSJ.55.5.3.
  • Kamal B, Aydın M. 2022. Application of fuzzy Bayesian approach on bankruptcy causes for container liner industry. Res Transp Bus Manage. 43:100769. doi:10.1016/j.rtbm.2021.100769.
  • Kamis AS, Fuad AFA, Anwar AQ, Monir Hossain M. 2022. A systematic scoping review on ship accidents due to off-track manoeuvring. WMU J Marit Aff. 21:453–492. doi:10.1007/s13437-022-00274-2.
  • Kaptan M. 2022. Analysis of accidents during vehicle stowage on RO-RO vessels by using Fuzzy Bayesian networks. Ocean Eng. 260:111997. doi:10.1016/j.oceaneng.2022.111997.
  • Kristiansen S. 2013. Maritime transportation: safety management and risk analysis. New York: Routledge.
  • Kutay Ş, Kamal B. 2022. Assessment of marine diesel engine crankshaft damages. Ships Offsh Struct. 17:2130–2139. doi:10.1080/17445302.2022.2050522.
  • Li Z, Wang X, Gong S, Sun N, Tong R. 2022. Risk assessment of unsafe behavior in university laboratories using the HFACS-UL and a fuzzy Bayesian network. J Saf Res. 82:13–27. doi:10.1016/j.jsr.2022.04.002.
  • Lo H-W, Liou JJH. 2018. A novel multiple-criteria decision-making-based FMEA model for risk assessment. Appl Soft Comput. 73:684–696. doi:10.1016/j.asoc.2018.09.020.
  • Mirzaei Aliabadi M, Pourhasan A, Mohammadfam I. 2020. Risk modelling of a hydrogen gasholder using Fuzzy Bayesian Network (FBN). Int J Hydrogen Energy. 45:1177–1186. doi:10.1016/j.ijhydene.2019.10.198.
  • Mitsui Engineering & Shipbuilding Co., Ltd. n.d. Mitsui-MAN B&W, Instruction Book, Volume 5, Manoeuvring system, engine remote control system section, shut down-slow down display.
  • Mitsui-MAN B&W. n.d. Mitsui-MAN B&W Diesel Engine 6S60MC Type, Instruction Manual, Engine Remote Control System (BMS-2000 II).
  • Onisawa T. 1988. An approach to human reliability in man-machine systems using error possibility. Fuzzy Sets Syst. 27:87–103. doi:10.1016/0165-0114(88)90140-6.
  • Qazi A, Dickson A, Quigley J, Gaudenzi B. 2018. Supply chain risk network management: a Bayesian belief network and expected utility based approach for managing supply chain risks. Int J Prod Econ. 196:24–42. doi:10.1016/j.ijpe.2017.11.008.
  • Qiao W, Liu Y, Ma X, Liu Y. 2020. Human factors analysis for maritime accidents based on a dynamic fuzzy Bayesian network. Risk Anal. 40:957–980. doi:10.1111/risa.13444.
  • Senol YE, Yasli F. 2021. A risk analysis study for chemical cargo tank cleaning process using Fuzzy Bayesian Network. Ocean Eng. 235:109360. doi:10.1016/j.oceaneng.2021.109360.
  • Szlapczynski R, Krata P, Szlapczynska J. 2018. Ship domain applied to determining distances for collision avoidance manoeuvres in give-way situations. Ocean Eng. 165:43–54. doi:10.1016/j.oceaneng.2018.07.041.
  • Turna İ. 2023. A Fuzzy Bayesian approach for ‘Appraisal’ of ship voyage plans. Ships Offsh Struct. 18:859–866. doi:10.1080/17445302.2022.2077279.
  • Ventikos NP, Papanikolaou AD, Louzis K, Koimtzoglou A. 2018. Statistical analysis and critical review of navigational accidents in adverse weather conditions. Ocean Eng. 163:502–517. doi:10.1016/j.oceaneng.2018.06.001.
  • Wan C, Yan X, Zhang D, Qu Z, Yang Z. 2019. An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks. Transp Res Part E Logist Transp Rev. 125:222–240. doi:10.1016/j.tre.2019.03.011.
  • Wang F, Zhao L, Bai Y. 2023. Survey on reliability analysis of dynamic positioning systems. Ships Offsh Struct. 1–11. doi:10.1080/17445302.2023.2225959.
  • Wang G, Spencer J, Chen Y. 2002. Assessment of a ship’s performance in accidents. Mar Struct. 15:313–333. doi:10.1016/S0951-8339(02)00017-5.
  • West Pandi. n.d. P&I Guidelines practical notes for ships’ Personnel [WWW Document]. URL https://www.westpandi.com/getattachment/6c4e10e0-dae9-4a90-83d2-ef2678aeb020/woe5161_p-i-guidelines_uk_web_aw.pdf.
  • Xue J, Papadimitriou E, Reniers G, Wu C, Jiang D, van Gelder PHAJM. 2021. A comprehensive statistical investigation framework for characteristics and causes analysis of ship accidents: A case study in the fluctuating backwater area of Three Gorges Reservoir region. Ocean Eng. 229:108981. doi:10.1016/j.oceaneng.2021.108981.
  • Yalcin E, Pehlivan EF, Cetin BA, Aymelek M. 2022. Optimising ship manoeuvring time during port approach using a decision support system: a case study in Turkey. Ships Offsh Struct. 1713–1725. doi:10.1080/17445302.2022.2140522.
  • Youssef SAM, Paik JK. 2018. Hazard identification and scenario selection of ship grounding accidents. Ocean Eng. 153:242–255. doi:10.1016/j.oceaneng.2018.01.110.
  • Yucesan M, Gul M, Celik E. 2021. A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method. Complex Intell Syst. 7:1547–1564. doi:10.1007/s40747-021-00279-z.
  • Zhang D, Yan XP, Yang ZL, Wall A, Wang J. 2013. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River. Reliab Eng Syst Saf. 118:93–105. doi:10.1016/j.ress.2013.04.006.
  • Zhang X, Zhang Q, Yang J, Cong Z, Luo J, Chen H. 2019. Safety risk analysis of unmanned ships in inland rivers based on a fuzzy Bayesian network. J Adv Transp. 2019:1–15. doi:10.1155/2019/4057195.
  • Zhao L, Fu X. 2021. A novel index for real-time ship collision risk assessment based on velocity obstacle considering dimension data from AIS. Ocean Eng. 240:109913. doi:10.1016/j.oceaneng.2021.109913.
  • Zhao X, He Y, Huang L, Mou J, Zhang K, Liu X. 2022. Intelligent collision avoidance method for ships based on COLRGEs and improved velocity obstacle algorithm. Appl Sci. 12:8926. https://doi.org/10.3390/app12188926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.