151
Views
0
CrossRef citations to date
0
Altmetric
Review

Managing gastrointestinal manifestations in systemic sclerosis, a mechanistic approach

, &
Pages 603-622 | Received 31 Oct 2023, Accepted 14 Feb 2024, Published online: 26 Feb 2024

References

  • Nihtyanova SI, Ong VH, Denton CP. Current management strategies for systemic sclerosis. Clin Exp Rheumatol. 2014;32:156–164.
  • Hong BY, Giang R, Mbuagbaw L, et al. Factors associated with development of gastrointestinal problems in patients with scleroderma: a systematic review. Syst Rev. 2015;4(1):188–2. doi: 10.1186/s13643-015-0176-2
  • McMahan ZH, Kulkarni S, Chen J, et al. Systemic sclerosis gastrointestinal dysmotility: risk factors, pathophysiology, diagnosis and management. Nat Rev Rheumatol. 2023;19(3):166–81. doi: 10.1038/s41584-022-00900-6
  • Bandini G, Alunno A, Ruaro B, et al. Significant gastrointestinal unmet needs in patients with systemic sclerosis: insights from a large international patient survey. Rheumatology (Oxford). 2023. doi: 10.1093/rheumatology/kead486
  • Rose S, Young MA, Reynolds JC. Gastrointestinal manifestations of scleroderma. Gastroenterol Clin North Am. 1998;27(3):563–94. doi: 10.1016/S0889-8553(05)70021-2
  • Tétreault M, Kahrilas P. GI manifestations with a focus on the Esophagus: recent progress in understanding pathogenesis. Curr Rheumatol Rep. 2019;21(8):42–x. doi: 10.1007/s11926-019-0841-x
  • Ahuja NK, Clarke JO. Scleroderma and the esophagus. Gastroenterol Clin North Am. 2021;50(4):905–18. doi: 10.1016/j.gtc.2021.08.005
  • Kaniecki T, Abdi T, McMahan ZH. A practical approach to the evaluation and management of gastrointestinal symptoms in patients with systemic sclerosis. Best Pract Res Clin Rheumatol. 2021;35(3):101666. doi: 10.1016/j.berh.2021.101666
  • Singh T, Sanghi V, Thota PN. Current management of Barrett esophagus and esophageal adenocarcinoma. Cleve Clin J Med. 2019;86(11):724–32. doi: 10.3949/ccjm.86a.18106
  • Iwakiri K, Fujiwara Y, Manabe N, et al. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021. J Gastroenterol. 2022;57(4):267–85. doi: 10.1007/s00535-022-01861-z
  • Carlson DA, Hinchcliff M, Pandolfino JE. Advances in the evaluation and management of esophageal disease of systemic sclerosis. Curr Rheumatol Rep. 2015;17(1):475–y. doi: 10.1007/s11926-014-0475-y
  • Abonia JP, Wen T, Stucke EM, et al. High prevalence of eosinophilic esophagitis in patients with inherited connective tissue disorders. J Allergy Clin Immunol. 2013;132(2):378–86. doi: 10.1016/j.jaci.2013.02.030
  • Júnior JG, Mugii N, Inaoka PT, et al. Inflammatory myopathies overlapping with systemic sclerosis: a systematic review. Clin Rheumatol. 2022;41(7):1951–63. doi: 10.1007/s10067-022-06115-0
  • La Montagna G, Coppa A, Bencivenga T, et al. Serum gastrin, fasting and after stimulation, in systemic sclerosis. Scand J Rheumatol. 1989;18(5):329–31. doi: 10.3109/03009748909095038
  • Akesson A, Ekman R. Gastrointestinal regulatory peptides in systemic sclerosis. Arthritis Rheum. 1993;36(5):698–703. doi: 10.1002/art.1780360519
  • Orringer MB, Orringer JS, Dabich L, et al. Combined Collis gastroplasty–fundoplication operations for scleroderma reflux esophagitis. Surgery. 1981;90:624–630.
  • Poirier NC, Taillefer R, Topart P, et al. Antireflux operations in patients with scleroderma. Ann Thorac Surg. 1994;58(1):66–3. doi: 10.1016/0003-4975(94)91073-1
  • Kent MS, Luketich JD, Irshad K, et al. Comparison of surgical approaches to recalcitrant gastroesophageal reflux disease in the patient with scleroderma. Ann Thorac Surg. 2007;84(5):1710–6. doi: 10.1016/j.athoracsur.2007.06.025
  • Mansour KA. 1988: surgery for scleroderma of the esophagus: a 12-year experience. Updated in 1995. Ann Thorac Surg. 1995;60:227.
  • Chen D, Hagen SJ, Boyce M, et al. Neuroendocrine mechanism of gastric acid secretion: historical perspectives and recent developments in physiology and pharmacology. J Neuroendocrinol. 2023;35(11):e13305. doi: 10.1111/jne.13305
  • Zhao C, Chen D. The ECL cell: relay station for gastric integrity. Curr Med Chem. 2012;19(1):98–108. doi: 10.2174/092986712803414060
  • Aihara T, Nakamura Y, Taketo MM, et al. Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:1199. doi: 10.1152/ajpgi.00514.2004
  • Aihara T, Fujishita T, Kanatani K, et al. Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology. 2003;125(6):1774–84. doi: 10.1053/j.gastro.2003.09.018
  • Shamsi BH, Chatoo M, Xu XK, et al. Versatile functions of somatostatin and somatostatin receptors in the gastrointestinal system. Front Endocrinol. 2021;12:652363. doi: 10.3389/fendo.2021.652363
  • Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov. 2003;2(2):132–9. doi: 10.1038/nrd1010
  • Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10(6):528–34. doi: 10.1007/s11894-008-0098-4
  • Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76(8):1327–39. doi: 10.1136/annrheumdis-2016-209909
  • Hansi N, Thoua N, Carulli M, et al. Consensus best practice pathway of the UK scleroderma study group: gastrointestinal manifestations of systemic sclerosis. Clin Exp Rheumatol. 2014;32:S–21.
  • Denton CP, Hughes M, Gak N, et al. BSR and BHPR guideline for the treatment of systemic sclerosis. Rheumatology (Oxford). 2016;55(10):1906–10. doi: 10.1093/rheumatology/kew224
  • Kahrilas PJ, Shaheen NJ, Vaezi MF, et al. American gastroenterological association institute technical review on the management of gastroesophageal reflux disease. Gastroenterology. 2008;135:1392–1395. doi: 10.1053/j.gastro.2008.08.044
  • Shoenut JP, Wieler JA, Micflikier AB. The extent and pattern of gastro-oesophageal reflux in patients with scleroderma oesophagus: the effect of low-dose omeprazole. Aliment Pharmacol Ther. 1993;7(5):509–13. doi: 10.1111/j.1365-2036.1993.tb00126.x
  • Hendel L, Hage E, Hendel J, et al. Omeprazole in the long-term treatment of severe gastro-oesophageal reflux disease in patients with systemic sclerosis. Aliment Pharmacol Ther. 1992;6(5):565–77. doi: 10.1111/j.1365-2036.1992.tb00571.x
  • Pakozdi A, Wilson H, Black CM, et al. Does long term therapy with lansoprazole slow progression of oesophageal involvement in systemic sclerosis? Clin Exp Rheumatol. 2009;27:5–8.
  • Muro Y, Sugiura K, Nitta Y, et al. Scoring of reflux symptoms associated with scleroderma and the usefulness of rabeprazole. Clin Exp Rheumatol. 2009;27(3 Suppl 54):15–21.
  • Foocharoen C, Chunlertrith K, Mairiang P, et al. Prevalence and predictors of proton pump inhibitor partial response in gastroesophageal reflux disease in systemic sclerosis: a prospective study. Sci Rep. 2020;10(1):769–0. doi: 10.1038/s41598-020-57636-0
  • Miyazaki H, Igarashi A, Takeuchi T, et al. Vonoprazan versus proton-pump inhibitors for healing gastroesophageal reflux disease: a systematic review. J Gastroenterol Hepatol. 2019;34(8):1316–28. doi: 10.1111/jgh.14664
  • Shirai Y, Kawami N, Iwakiri K, et al. Use of vonoprazan, a novel potassium-competitive acid blocker, for the treatment of proton pump inhibitor-refractory reflux esophagitis in patients with systemic sclerosis. J Scleroderma Relat Disord. 2022;7(1):57–61. doi: 10.1177/23971983211021747
  • Tabuchi M, Minami H, Akazawa Y, et al. Use of vonoprazan for management of systemic sclerosis-related gastroesophageal reflux disease. Biomed Rep. 2021;14:25. doi: 10.3892/br.2020.1401
  • Hughes M, Allanore Y, Baron M, et al. Proton pump inhibitors in systemic sclerosis: a reappraisal to optimise treatment of gastro-oesophageal reflux disease. Lancet Rheumatol. 2022;4(11):e795–803. doi: 10.1016/S2665-9913(22)00183-7
  • Sigterman KE, van Pinxteren B, Bonis PA, et al. Short-term treatment with proton pump inhibitors, H2-receptor antagonists and prokinetics for gastro-oesophageal reflux disease-like symptoms and endoscopy negative reflux disease. Cochrane Database Syst Rev. 2013;2013:CD002095. doi: 10.1002/14651858.CD002095.pub5
  • Chremos AN. Pharmacodynamics of famotidine in humans. Am J Med. 1986;81(4):3–7. doi: 10.1016/0002-9343(86)90593-0
  • Petrokubi RJ, Jeffries GH. Cimetidine versus antacid in scleroderma with reflux esophagitis. A randomized double-blind controlled study. Gastroenterology. 1979;77(4):691–5. doi: 10.1016/0016-5085(79)90223-3
  • Hendel L, Aggestrup S, Stentoft P. Long-term ranitidine in progressive systemic sclerosis (scleroderma) with gastroesophageal reflux. Scand J Gastroenterol. 1986;21(7):799–805. doi: 10.3109/00365528609011120
  • Janiak P, Thumshirn M, Menne D, et al. Clinical trial: the effects of adding ranitidine at night to twice daily omeprazole therapy on nocturnal acid breakthrough and acid reflux in patients with systemic sclerosis–a randomized controlled, cross-over trial. Aliment Pharmacol Ther. 2007;26(9):1259–65. doi: 10.1111/j.1365-2036.2007.03469.x
  • Laine-Cessac P, Turcant A, Premel-Cabic A, et al. Inhibition of cholinesterases by histamine 2 receptor antagonist drugs. Res Commun Chem Pathol Pharmacol. 1993;79:185–193.
  • Hansen WE, Bertl S. The inhibition of acetylcholinesterase and pseudocholinesterase by cimetidine. Arzneimittelforschung. 1983;33:161–163.
  • Aono M, Moriga M, Mizuta K, et al. Cholinergic effects of histamine-H2 receptor antagonists partly through inhibition of acetylcholinesterase. Gastroenterol Jpn. 1986;21(3):213–9. doi: 10.1007/BF02774563
  • Kosh JW, Sowell JW, Chapman JM. A comparison of the cholinergic activity of selected H2-antagonists and sulfoxide metabolites. Pharm Res. 1989;6(8):709–13. doi: 10.1023/A:1015994607652
  • Horikoshi T, Sekiguchi T, Kusano M, et al. Effects of famotidine on upper gastrointestinal motility in patients with progressive systemic sclerosis. Gastroenterol Jpn. 1991;26(2):145–50. doi: 10.1007/BF02811072
  • Horikoshi T, Matsuzaki T, Sekiguchi T. Effect of H2-receptor antagonists cimetidine and famotidine on interdigestive gastric motor activity and lower esophageal sphincter pressure in progressive systemic sclerosis. Intern Med. 1994;33(7):407–12. doi: 10.2169/internalmedicine.33.407
  • Konturek SJ. New aspects of clinical pharmacology of antacids. J Physiol Pharmacol. 1993;44:5–21.
  • Stanciu C, Bennett JR. Alginate-antacid in the reduction of gastro-oesophageal reflux. Lancet. 1974;1:109–111. doi: 10.1016/S0140-6736(74)92340-X
  • Lai I, Wu M, Lin J. Prospective, randomized, and active controlled study of the efficacy of alginic acid and antacid in the treatment of patients with endoscopy-negative reflux disease. World J Gastroenterol. 2006;12:747–754. doi: 10.3748/wjg.v12.i5.747
  • Foocharoen C, Chunlertrith K, Mairiang P, et al. Effectiveness of add-on therapy with domperidone vs alginic acid in proton pump inhibitor partial response gastro-oesophageal reflux disease in systemic sclerosis: randomized placebo-controlled trial. Rheumatology (Oxford). 2017;56(2):214–22. doi: 10.1093/rheumatology/kew216
  • Roberts CGP, Hummers LK, Ravich WJ, et al. A case-control study of the pathology of oesophageal disease in systemic sclerosis (scleroderma). Gut. 2006;55(12):1697–703. doi: 10.1136/gut.2005.086074
  • Prescott RJ, Freemont AJ, Jones CJ, et al. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–263. doi: 10.1002/path.1711660307
  • Russell ML, Friesen D, Henderson RD, et al. Ultrastructure of the esophagus in scleroderma. Arthritis Rheum. 1982;25(9):1117–23. doi: 10.1002/art.1780250913
  • Howe S, Eaker EY, Sallustio JE, et al. Antimyenteric neuronal antibodies in scleroderma. J Clin Invest. 1994;94(2):761–70. doi: 10.1172/JCI117395
  • Eaker EY, Kuldau JG, Verne GN, et al. Myenteric neuronal antibodies in scleroderma: passive transfer evokes alterations in intestinal myoelectric activity in a rat model. J Lab Clin Med. 1999;133(6):551–6. doi: 10.1016/S0022-2143(99)90184-1
  • McFarlane IM, Bhamra MS, Kreps A, et al. Gastrointestinal manifestations of systemic sclerosis. Rheumatology (Sunnyvale). 2018;8:235. cited 2018 Mar 30. doi: 10.4172/2161-1149.1000235
  • Raja J, Ng CT, Sujau I, et al. High-resolution oesophageal manometry and 24-hour impedance-pH study in systemic sclerosis patients: association with clinical features, symptoms and severity. Clin Exp Rheumatol. 2016;34(Suppl 100):115–121.
  • Adler B, Hummers LK, Pasricha PJ, et al. Gastroparesis in systemic sclerosis: a detailed analysis using whole-gut scintigraphy. Rheumatology (Oxford). 2022;61(11):4503–8. doi: 10.1093/rheumatology/keac074
  • Kaniecki T, Abdi T, McMahan ZH. Clinical assessment of gastrointestinal involvement in patients with systemic sclerosis. Med Res Arch. 2020 [Epub 2020 Oct 29];8:2252. doi: 10.18103/mra.v8i10.2252
  • Kulkarni S, Ganz J, Bayrer J, et al. Advances in enteric neurobiology: the “brain” in the gut in health and disease. J Neurosci. 2018;38(44):9346–54. doi: 10.1523/JNEUROSCI.1663-18.2018
  • Tobias A, Sadiq NM. Physiology, gastrointestinal nervous control. In: Anonymous StatPearls. Treasure Island (FL): StatPearls Publishing LLC; 2023.
  • Pasternak A, Szura M, Gil K, et al. Interstitial cells of Cajal - systematic review. Folia Morphol (Warsz). 2016;75:281–286. doi: 10.5603/FM.a2016.0002
  • O’Brien MD, Camilleri M, Thomforde GM, et al. Effect of cholecystokinin octapeptide and atropine on human colonic motility, tone, and transit. Dig Dis Sci. 1997;42(1):26–33. doi: 10.1023/A:1018868601475
  • Marquart K, Prokopchuk O, Wilhelm D, et al. Human small bowel as model for poisoning with organophosphorus compounds. Toxicol Vitro. 2019;57:76–80. doi: 10.1016/j.tiv.2019.02.010
  • Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4:1339–1368.
  • Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610–9. doi: 10.1097/MCG.0b013e31816b444d
  • Kung Y, Hsu W, Wu M, et al. Recent advances in the pharmacological management of gastroesophageal reflux disease. Dig Dis Sci. 2017;62(12):3298–316. doi: 10.1007/s10620-017-4830-5
  • Di Natale MR, Athavale ON, Wang X, et al. Functional and anatomical gastric regions and their relations to motility control. Neurogastroenterol Motil. 2023;35(9):e14560. doi: 10.1111/nmo.14560
  • Abrahamsson H, Jansson G. Vago-vagal gastro-gastric relaxation in the cat. Acta Physiol Scand. 1973;88(3):289–95. doi: 10.1111/j.1748-1716.1973.tb05457.x
  • Wilbur BG, Kelly KA. Effect of proximal gastric, complete gastric, and truncal vagotomy on canine gastric electric activity, motility, and emptying. Ann Surg. 1973;178(3):295–303. doi: 10.1097/00000658-197309000-00009
  • Mori H, Verbeure W, Tanemoto R, et al. Physiological functions and potential clinical applications of motilin. Peptides. 2023;160:170905. doi: 10.1016/j.peptides.2022.170905
  • Parikh A, Thevenin C. Physiology, gastrointestinal hormonal control. In: Anonymous StatPearls. Treasure Island (FL): StatPearls Publishing LLC; 2023.
  • Wei L, Singh R, Ha SE, et al. Serotonin deficiency is associated with delayed gastric emptying. Gastroenterology. 2021;160:2451,2466.e19. doi: 10.1053/j.gastro.2021.02.060
  • Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol. 2022. doi: 10.1111/bph.15930
  • Keating DJ, Spencer NJ. Release of 5-hydroxytryptamine from the mucosa is not required for the generation or propagation of colonic migrating motor complexes. Gastroenterology. 2010;138:659–2. doi: 10.1053/j.gastro.2009.09.020
  • Guzel T, Mirowska-Guzel D. The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules. 2022;27:1680. doi: 10.3390/molecules27051680
  • Sifrim D, Holloway RH, Tack J, et al. Effect of sumatriptan, a 5HT1 agonist, on the frequency of transient lower esophageal sphincter relaxations and gastroesophageal reflux in healthy subjects. Am J Gastroenterol. 1999;94(11):3158–64. doi: 10.1111/j.1572-0241.1999.01509.x
  • Borman RA, Burleigh DE. 5-HT1D and 5-HT2B receptors mediate contraction of smooth muscle in human small intestine. Ann N Y Acad Sci. 1997;812(1):222–3. doi: 10.1111/j.1749-6632.1997.tb48182.x
  • Mawe GM, Hoffman JM. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10:473–486. doi: 10.1038/nrgastro.2013.105
  • Hoffman JM, Tyler K, MacEachern SJ, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142:844,854.e4. doi: 10.1053/j.gastro.2011.12.041
  • Eisenhofer G, Aneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82(11):3864–71. doi: 10.1210/jcem.82.11.4339
  • Li ZS, Pham TD, Tamir H, et al. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci. 2004;24(6):1330–9. doi: 10.1523/JNEUROSCI.3982-03.2004
  • Serio R, Zizzo MG. The multiple roles of dopamine receptor activation in the modulation of gastrointestinal motility and mucosal function. Auton Neurosci. 2023;244:103041. doi: 10.1016/j.autneu.2022.103041
  • Sigala S, Missale G, Raddino R, et al. Opposing roles for D-1 and D-2 dopamine receptors in the regulation of lower esophageal sphincter motility in the rat. Life Sci. 1994;54(15):1035–45. doi: 10.1016/0024-3205(94)00414-5
  • Auteri M, Zizzo MG, Amato A, et al. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors. J Physiol Biochem. 2016;73(3):395–404. doi: 10.1007/s13105-017-0566-0
  • Kobayashi M, Iaccarino C, Saiardi A, et al. Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci USA. 2004;101(31):11465–70. doi: 10.1073/pnas.0402028101
  • Li ZS, Schmauss C, Cuenca A, et al. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci. 2006;26(10):2798–807. doi: 10.1523/JNEUROSCI.4720-05.2006
  • Lim HC, Kim YG, Lim JH, et al. Effect of itopride hydrochloride on the ileal and colonic motility in guinea pig in vitro. Yonsei Med J. 2008;49(3):472–8. doi: 10.3349/ymj.2008.49.3.472
  • Sanger GJ, Andrews PLR. Review article: an analysis of the pharmacological rationale for selecting drugs to inhibit vomiting or increase gastric emptying during treatment of gastroparesis. Aliment Pharmacol Ther. 2023;57(9):962–78. doi: 10.1111/apt.17466
  • Camilleri M, Parkman HP, Shafi MA, et al. Clinical guideline: management of gastroparesis. Am J Gastroenterol. 2013;108(18):37. quiz 38. doi: 10.1038/ajg.2012.373
  • Ramirez-Mata M, Ibañez G, Alarcon-Segovia D. Stimulatory effect of metoclopramide on the esophagus and lower esophageal sphincter of patients of patients with PSS. Arthritis Rheum. 1977;20:30–34. doi: 10.1002/art.1780200105
  • Johnson DA, Drane WE, Curran J, et al. Metoclopramide response in patients with progressive systemic sclerosis. Effect on esophageal and gastric motility abnormalities. Arch Intern Med. 1987;147:1597–1601. doi: 10.1001/archinte.1987.00370090075014
  • Mercado U, Arroyo de Anda R, Avendaño L, et al. Metoclopramide response in patients with early diffuse systemic sclerosis. Effects on esophageal motility abnormalities. Clin Exp Rheumatol. 2005;23:685–688.
  • Karamanolis GP, Panopoulos S, Karlaftis A, et al. Beneficial effect of the 5-HT1A receptor agonist buspirone on esophageal dysfunction associated with systemic sclerosis: a pilot study. United Eur Gastroenterol J. 2015;3(3):266–71. doi: 10.1177/2050640614560453
  • Reddymasu SC, Soykan I, McCallum RW. Domperidone: review of pharmacology and clinical applications in gastroenterology. Am J Gastroenterol. 2007;102(9):2036–45. doi: 10.1111/j.1572-0241.2007.01255.x
  • Wu Y, Li M, Han H, et al. Elevated plasma/serum levels of prolactin in patients with systemic sclerosis: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(38):e22239. doi: 10.1097/MD.0000000000022239
  • Di Stefano M, Papathanasopoulos A, Blondeau K, et al. Effect of buspirone, a 5-HT1A receptor agonist, on esophageal motility in healthy volunteers. Dis Esophagus. 2012;25(5):470–6. doi: 10.1111/j.1442-2050.2011.01275.x
  • Blonski W, Vela MF, Freeman J, et al. The effect of oral buspirone, pyridostigmine, and bethanechol on esophageal function evaluated with combined multichannel esophageal impedance-manometry in healthy volunteers. J Clin Gastroenterol. 2009;43(3):253–60. doi: 10.1097/MCG.0b013e318167b89d
  • Karamanolis GP, Panopoulos S, Denaxas K, et al. The 5-HT1A receptor agonist buspirone improves esophageal motor function and symptoms in systemic sclerosis: a 4-week, open-label trial. Arthritis Res Ther. 2016;18(1):195–y. doi: 10.1186/s13075-016-1094-y
  • McNearney TA, Sallam HS, Hunnicutt SE, et al. Gastric slow waves, gastrointestinal symptoms and peptides in systemic sclerosis patients. Neurogastroenterol Motil. 2009;21(12):1269–e120. doi: 10.1111/j.1365-2982.2009.01350.x
  • Mori H, Verbeure W, Schol J, et al. Gastrointestinal hormones and regulation of gastric emptying. Curr Opin Endocrinol Diabetes Obes. 2022;29(2):191–9. doi: 10.1097/MED.0000000000000707
  • Ishikawa M, Raskin P. From motilin to motilides: a new direction in gastrointestinal endocrinology. Endocr Pract. 1995;1(3):179–84. doi: 10.4158/EP.1.3.179
  • Richards RD, Davenport K, McCallum RW. The treatment of idiopathic and diabetic gastroparesis with acute intravenous and chronic oral erythromycin. Am J Gastroenterol. 1993;88:203–207.
  • Camilleri M, Atieh J. New developments in prokinetic therapy for gastric motility disorders. Front Pharmacol. 2021;12:711500. doi: 10.3389/fphar.2021.711500
  • Zhang S, Okuhara Y, Iijima M, et al. Identification of pheasant ghrelin and motilin and their actions on contractility of the isolated gastrointestinal tract. Gen Comp Endocrinol. 2020;285:113294. doi: 10.1016/j.ygcen.2019.113294
  • Fiorucci S, Distrutti E, Bassotti G, et al. Effect of erythromycin administration on upper gastrointestinal motility in scleroderma patients. Scand J Gastroenterol. 1994;29(9):807–13. doi: 10.3109/00365529409092515
  • Thielemans L, Depoortere I, Perret J, et al. Desensitization of the human motilin receptor by motilides. J Pharmacol Exp Ther. 2005;313(3):1397–405. doi: 10.1124/jpet.104.081497
  • Jewett BE, Sharma S. Physiology, GABA. In: Anonymous StatPearls. Treasure Island (FL): StatPearls Publishing LLC; 2023.
  • Arabpour E, Khoshdel S, Akhgarzad A, et al. Baclofen as a therapeutic option for gastroesophageal reflux disease: a systematic review of clinical trials. Front Med. 2023;10:997440. doi: 10.3389/fmed.2023.997440
  • Marie I, Levesque H, Ducrotté P, et al. Manometry of the upper intestinal tract in patients with systemic sclerosis: a prospective study. Arthritis Rheum. 1998;41:1874–1883. doi: 10.1002/1529-0131(199810)41:10<1874:AID-ART21>3.0.CO;2-T
  • Brandler JB, Sweetser S, Khoshbin K, et al. Colonic manifestations and complications are relatively under-reported in systemic sclerosis: a systematic review. Am J Gastroenterol. 2019;114(12):1847–56. doi: 10.14309/ajg.0000000000000397
  • Takeuchi K, Endoh T, Hayashi S, et al. Activation of muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of gastric acid secretion: relation to D cell/somatostatin. Front Pharmacol. 2016;7:278. doi: 10.3389/fphar.2016.00278
  • Foxx-Orenstein A, Camilleri M, Stephens D, et al. Effect of a somatostatin analogue on gastric motor and sensory functions in healthy humans. Gut. 2003;52:1555–1561. doi: 10.1136/gut.52.11.1555
  • Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35:1. doi: 10.1136/gut.35.3_Suppl.S1
  • Arts J, Caenepeel P, Bisschops R, et al. Efficacy of the long-acting repeatable formulation of the somatostatin analogue octreotide in postoperative dumping. Clin Gastroenterol Hepatol. 2009;7(4):432–7. doi: 10.1016/j.cgh.2008.11.025
  • Deloose E, Bisschops R, Holvoet L, et al. A pilot study of the effects of the somatostatin analog pasireotide in postoperative dumping syndrome. Neurogastroenterol Motil. 2014;26(6):803–9. doi: 10.1111/nmo.12333
  • Bisschops R, De Ruyter V, Demolin G, et al. Lanreotide autogel in the treatment of idiopathic refractory diarrhea: results of an exploratory, controlled, before and after, open-label, multicenter, prospective clinical trial. Clin Ther 1911. 2. 2016;38:1902. doi: 10.1016/j.clinthera.2016.06.012
  • Tack J, Aberle J, Arts J, et al. Safety and efficacy of pasireotide in dumping syndrome-results from a phase 2, multicentre study. Aliment Pharmacol Ther. 2018;47:1661–1672. doi: 10.1111/apt.14664
  • Wauters L, Arts J, Caenepeel P, et al. Efficacy and safety of lanreotide in postoperative dumping syndrome: a phase II randomised and placebo-controlled study. United Eur Gastroenterol J. 2019;7(8):1064–72. doi: 10.1177/2050640619862166
  • Soudah HC, Hasler WL, Owyang C. Effect of octreotide on intestinal motility and bacterial overgrowth in scleroderma. N Engl J Med. 1991;325:1461–1467.
  • Nikou GC, Toumpanakis C, Katsiari C, et al. Treatment of small intestinal disease in systemic sclerosis with octreotide: a prospective study in seven patients. J Clin Rheumatol. 2007;13(3):119–23. doi: 10.1097/RHU.0b013e3180645d2a
  • Owyang C. Octreotide in gastrointestinal motility disorders. Gut. 1994;35:11. doi: 10.1136/gut.35.3_Suppl.S11
  • Verne GN, Eaker EY, Hardy E, et al. Effect of octreotide and erythromycin on idiopathic and scleroderma-associated intestinal pseudoobstruction. Dig Dis Sci. 1995;40(9):1892–901. doi: 10.1007/BF02208652
  • Battershill PE, Clissold SO. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in conditions associated with excessive peptide secretion. Drugs. 1989;38:658–702. doi: 10.2165/00003495-198938050-00002
  • Hamaguchi Y, Fujimoto M, Matsushita T, et al. Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in development of fibrosis. J Rheumatol. 2008;35(12):2363–71. doi: 10.3899/jrheum.080340
  • Oyucu Orhan S, Tektemur A, Gözel N, et al. Octreotide ameliorates dermal fibrosis in bleomycin-induced scleroderma. Turk J Med Sci. 2018;48(4):886–91. doi: 10.3906/sag-1707-88
  • Fawzi MMT, Tawfik SO, Eissa AM, et al. Expression of insulin-like growth factor-I in lesional and non-lesional skin of patients with morphoea. Br J Dermatol. 2008;159(1):86–90. doi: 10.1111/j.1365-2133.2008.08592.x
  • Chang L, Chey WD, Imdad A, et al. American gastroenterological association-american college of gastroenterology clinical practice guideline: pharmacological management of chronic idiopathic constipation. Am J Gastroenterol. 2023;118(6):936–54. doi: 10.14309/ajg.0000000000002227
  • Bassotti G, Usai Satta P, Bellini M. Chronic idiopathic constipation in adults: a review on current guidelines and emerging treatment options. Clin Exp Gastroenterol. 2021;14:413–28. doi: 10.2147/CEG.S256364
  • Krueger D, Demir IE, Ceyhan GO, et al. Bis-(p-hydroxyphenyl)-pyridyl-2-methane (BHPM)-the active metabolite of the laxatives bisacodyl and sodium picosulfate-enhances contractility and secretion in human intestine in vitro. Neurogastroenterol Motil. 2018;30:e13311. doi: 10.1111/nmo.13311
  • Camilleri M. Review article: new receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol Ther. 2010;31(1):35–46. doi: 10.1111/j.1365-2036.2009.04153.x
  • Nikolovska K, Seidler UE, Stock C. The role of plasma membrane sodium/hydrogen exchangers in gastrointestinal functions: proliferation and differentiation, fluid/electrolyte transport and barrier integrity. Front Physiol. 2022;13:899286. doi: 10.3389/fphys.2022.899286
  • Barish CF, Drossman D, Johanson JF, et al. Efficacy and safety of lubiprostone in patients with chronic constipation. Dig Dis Sci. 2010;55(4):1090–7. doi: 10.1007/s10620-009-1068-x
  • Fukudo S, Hongo M, Kaneko H, et al. Lubiprostone increases spontaneous bowel movement frequency and quality of life in patients with chronic idiopathic constipation. Clin Gastroenterol Hepatol. 2015;13:294,301.e5. doi: 10.1016/j.cgh.2014.08.026
  • Johanson JF, Morton D, Geenen J, et al. Multicenter, 4-week, double-blind, randomized, placebo-controlled trial of lubiprostone, a locally-acting type-2 chloride channel activator, in patients with chronic constipation. Am J Gastroenterol. 2008;103(1):170–7. doi: 10.1111/j.1572-0241.2007.01524.x
  • Miner PBJ, Koltun WD, Wiener GJ, et al. A randomized phase III clinical trial of plecanatide, a uroguanylin analog, in patients with chronic idiopathic constipation. Am J Gastroenterol. 2017;112(4):613–21. doi: 10.1038/ajg.2016.611
  • DeMicco M, Barrow L, Hickey B, et al. Randomized clinical trial: efficacy and safety of plecanatide in the treatment of chronic idiopathic constipation. Therap Adv Gastroenterol. 2017;10(11):837–51. doi: 10.1177/1756283X17734697
  • Barish C, Dorn S, Fogel RP, et al. Plecanatide is effective and safe in the treatment for chronic idiopathic constipation: results of a phase II trial. Dig Dis Sci. 2021;66(2):537–40. doi: 10.1007/s10620-020-06187-5
  • Schoenfeld P, Lacy BE, Chey WD, et al. Low-dose linaclotide (72 μg) for chronic idiopathic constipation: a 12-week, randomized, double-blind, placebo-controlled trial. Am J Gastroenterol. 2018;113(1):105–14. doi: 10.1038/ajg.2017.230
  • Lembo AJ, Schneier HA, Shiff SJ, et al. Two randomized trials of linaclotide for chronic constipation. N Engl J Med. 2011;365(6):527–36. doi: 10.1056/NEJMoa1010863
  • Chey WD, Lembo AJ, Yang Y, et al. Efficacy of tenapanor in treating patients with irritable bowel syndrome with constipation: a 26-week, placebo-controlled phase 3 trial (T3MPO-2). Am J Gastroenterol. 2021;116(6):1294–303. doi: 10.14309/ajg.0000000000001056
  • Chey WD, Lembo AJ, Rosenbaum DP. Efficacy of tenapanor in treating patients with irritable bowel syndrome with constipation: a 12-week, placebo-controlled phase 3 trial (T3MPO-1). Am J Gastroenterol. 2020;115(2):281–93. doi: 10.14309/ajg.0000000000000516
  • Dein EJ, Wigley FM, McMahan ZH. Linaclotide for the treatment of refractory lower bowel manifestations of systemic sclerosis. BMC Gastroenterol. 2021;21:174–0.
  • Wang S, Lan J, Lan J, et al. Effects of cisapride on colonic transit in patients with progressive systemic sclerosis. Clin Rheumatol. 2002;21(4):271–4. doi: 10.1007/s100670200072
  • Wang SJ, La JL, Chen DY, et al. Effects of cisapride on oesophageal transit of solids in patients with progressive systemic sclerosis. Clin Rheumatol. 2002;21:43–45. doi: 10.1007/s100670200010
  • Kahan A, Chaussade S, Gaudric M, et al. The effect of cisapride on gastro-oesophageal dysfunction in systemic sclerosis: a controlled manometric study. Br J Clin Pharmacol. 1991;31(6):683–7. doi: 10.1111/j.1365-2125.1991.tb05593.x
  • Limburg AJ, Smit AJ, Kleibeuker JH. Effects of cisapride on the esophageal motor function of patients with progressive systemic sclerosis or mixed connective tissue disease. Digestion. 1991;49(3):156–60. doi: 10.1159/000200715
  • Horowitz M, Maddern GJ, Maddox A, et al. Effects of cisapride on gastric and esophageal emptying in progressive systemic sclerosis. Gastroenterology. 1987;93(2):311–5. doi: 10.1016/0016-5085(87)91020-1
  • Camilleri M, Kerstens R, Rykx A, et al. A placebo-controlled trial of prucalopride for severe chronic constipation. N Engl J Med. 2008;358(22):2344–54. doi: 10.1056/NEJMoa0800670
  • Tack J, Camilleri M, Dubois D, et al. Association between health-related quality of life and symptoms in patients with chronic constipation: an integrated analysis of three phase 3 trials of prucalopride. Neurogastroenterol Motil. 2015;27(3):397–405. doi: 10.1111/nmo.12505
  • Lei W, Hung J, Liu T, et al. Influence of prucalopride on esophageal secondary peristalsis in reflux patients with ineffective motility. J Gastroenterol Hepatol. 2018;33(3):650–5. doi: 10.1111/jgh.13986
  • Kessing BF, Smout AJPM, Bennink RJ, et al. Prucalopride decreases esophageal acid exposure and accelerates gastric emptying in healthy subjects. Neurogastroenterol Motil. 2014;26(8):1079–86. doi: 10.1111/nmo.12359
  • Carbone F, Van den Houte K, Clevers E, et al. Prucalopride in gastroparesis: a randomized placebo-controlled crossover study. Am J Gastroenterol. 2019;114(8):1265–74. doi: 10.14309/ajg.0000000000000304
  • Andrews CN, Woo M, Buresi M, et al. Prucalopride in diabetic and connective tissue disease-related gastroparesis: randomized placebo-controlled crossover pilot trial. Neurogastroenterol Motil. 2021;33(1):e13958. doi: 10.1111/nmo.13958
  • Vigone B, Caronni M, Severino A, et al. Preliminary safety and efficacy profile of prucalopride in the treatment of systemic sclerosis (SSc)-related intestinal involvement: results from the open label cross-over PROGASS study. Arthritis Res Ther. 2017;19(1):145–y. doi: 10.1186/s13075-017-1340-y
  • Lacy BE, Brenner DM, Chey WD. Re-evaluation of the cardiovascular safety profile of Tegaserod: a review of the clinical data. Clin Gastroenterol Hepatol. 2022;20(4):e682–95. doi: 10.1016/j.cgh.2021.05.040
  • Stimmel GL, Dopheide JA, Stahl SM. Mirtazapine: an antidepressant with noradrenergic and specific serotonergic effects. Pharmacotherapy. 1997;17(1):10–21. doi: 10.1002/j.1875-9114.1997.tb03674.x
  • Tack J, Ly HG, Carbone F, et al. Efficacy of mirtazapine in patients with functional dyspepsia and weight loss. Clin Gastroenterol Hepatol. 2016;14:385,392.e4. doi: 10.1016/j.cgh.2015.09.043
  • Spiegel DR, Kolb R. Treatment of irritable bowel syndrome with comorbid anxiety symptoms with mirtazapine. Clin Neuropharmacol. 2011;34(1):36–8. doi: 10.1097/WNF.0b013e318209cef2
  • Law NM, Bharucha AE, Undale AS, et al. Cholinergic stimulation enhances colonic motor activity, transit, and sensation in humans. Am J Physiol Gastrointest Liver Physiol. 2001;281:1228. doi: 10.1152/ajpgi.2001.281.5.G1228
  • Katschinski M, Steinicke C, Reinshagen M, et al. Gastrointestinal motor and secretory responses to cholinergic stimulation in humans. Differential modulation by muscarinic and cholecystokinin receptor blockade. Eur J Clin Invest. 1995;25(2):113–22. doi: 10.1111/j.1365-2362.1995.tb01535.x
  • McCallum RW. Gastric emptying in gastroesophageal reflux and the therapeutic role of prokinetic agents. Gastroenterol Clin North Am. 1990;19(3):551–64. doi: 10.1016/S0889-8553(21)00656-7
  • Longo WE, AM3 V. Prokinetic agents for lower gastrointestinal motility disorders. Dis Colon Rectum. 1993;36:696–708. doi: 10.1007/BF02238599
  • Dudi-Venkata NN, Kroon HM, Bedrikovetski S, et al. PyRICo-pilot: pyridostigmine to reduce the duration of postoperative ileus after colorectal surgery - a phase II study. Colorectal Dis. 2021;23:2154–2160. doi: 10.1111/codi.15748
  • Klinge MW, Haase A, Mark EB, et al. Colonic motility in patients with type 1 diabetes and gastrointestinal symptoms. Neurogastroenterol Motil. 2020;32(12):e13948. doi: 10.1111/nmo.13948
  • Bharucha AE, Low P, Camilleri M, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62(5):708–15. doi: 10.1136/gutjnl-2012-302483
  • Accarino A, Perez F, Azpiroz F, et al. Intestinal gas and bloating: effect of prokinetic stimulation. Am J Gastroenterol. 2008;103(8):2036–42. doi: 10.1111/j.1572-0241.2008.01866.x
  • Bharucha AE, Low PA, Camilleri M, et al. Pilot study of pyridostigmine in constipated patients with autonomic neuropathy. Clin Auton Res. 2008;18(4):194–202. doi: 10.1007/s10286-008-0476-x
  • Robinson-Papp J, Nmashie A, Pedowitz E, et al. The effect of pyridostigmine on small intestinal bacterial overgrowth (SIBO) and plasma inflammatory biomarkers in HIV-associated autonomic neuropathies. J Neurovirol. 2019;25(4):551–9. doi: 10.1007/s13365-019-00756-9
  • Ahuja NK, Mische L, Clarke JO, et al. Pyridostigmine for the treatment of gastrointestinal symptoms in systemic sclerosis. Semin Arthritis Rheum. 2018;48(1):111–6. doi: 10.1016/j.semarthrit.2017.12.007
  • Volkmann ER, Hoffmann-Vold A, Chang Y, et al. Longitudinal characterisation of the gastrointestinal tract microbiome in systemic sclerosis. Eur Med J (Chelmsf). 2020;7:110–118. doi: 10.33590/emj/20-00043
  • Bellocchi C, Fernández-Ochoa Á, Montanelli G, et al. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann N Y Acad Sci. 2018;1421(1):97–109. doi: 10.1111/nyas.13736
  • Patrone V, Puglisi E, Cardinali M, et al. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci Rep. 2017;7(1):14874–6. doi: 10.1038/s41598-017-14889-6
  • Volkmann ER, Hoffmann-Vold A, Chang Y, et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. 2017;4(1):e000134. doi: 10.1136/bmjgast-2017-000134
  • Andréasson K, Alrawi Z, Persson A, et al. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther. 2016;18(1):278–z. doi: 10.1186/s13075-016-1182-z
  • Volkmann ER, Chang Y, Barroso N, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis & Rheumat. 2016;68(6):1483–92. doi: 10.1002/art.39572
  • Hoffmann-Vold A, Fretheim H, Didriksen H, et al. The potential of fecal microbiota transplantation in systemic sclerosis. Expert Rev Clin Immunol. 2020;16(2):117–8. doi: 10.1080/1744666X.2019.1707665
  • Chander Roland B, Mullin GE, Passi M, et al. A prospective evaluation of ileocecal valve dysfunction and intestinal motility derangements in small intestinal bacterial overgrowth. Dig Dis Sci. 2017;62(12):3525–35. doi: 10.1007/s10620-017-4726-4
  • Sawadpanich K, Soison P, Chunlertrith K, et al. Prevalence and associated factors of small intestinal bacterial overgrowth among systemic sclerosis patients. Int J Rheum Dis. 2019;22(4):695–9. doi: 10.1111/1756-185X.13495
  • Rezaie A, Buresi M, Lembo A, et al. Hydrogen and methane-based breath testing in gastrointestinal disorders: the North American Consensus. Am J Gastroenterol. 2017;112(5):775–84. doi: 10.1038/ajg.2017.46
  • Sakkas LI, Simopoulou T, Daoussis D, et al. Intestinal involvement in systemic sclerosis: a clinical review. Dig Dis Sci. 2018;63(4):834–44. doi: 10.1007/s10620-018-4977-8
  • Quigley EMM, Murray JA, Pimentel M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology. 2020;159(4):1526–32. doi: 10.1053/j.gastro.2020.06.090
  • Parodi A, Sessarego M, Greco A, et al. Small intestinal bacterial overgrowth in patients suffering from scleroderma: clinical effectiveness of its eradication. Am J Gastroenterol. 2008;103(5):1257–62. doi: 10.1111/j.1572-0241.2007.01758.x
  • Shah A, Pakeerathan V, Jones MP, et al. Small intestinal bacterial overgrowth complicating gastrointestinal manifestations of systemic sclerosis: a systematic review and meta-analysis. J Neurogastroenterol Motil. 2023;29:132–144.
  • Kaye SA, Lim SG, Taylor M, et al. Small bowel bacterial overgrowth in systemic sclerosis: detection using direct and indirect methods and treatment outcome. Br J Rheumatol. 1995;34(3):265–9. doi: 10.1093/rheumatology/34.3.265
  • Marie I, Ducrotté P, Denis P, et al. Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology (Oxford). 2009;48(10):1314–9. doi: 10.1093/rheumatology/kep226
  • Lembo A, Sultan S, Chang L, et al. AGA clinical practice guideline on the pharmacological management of irritable bowel syndrome with diarrhea. Gastroenterology. 2022;163(1):137–51. doi: 10.1053/j.gastro.2022.04.017
  • Low K, Hwang L, Hua J, et al. A combination of rifaximin and neomycin is most effective in treating irritable bowel syndrome patients with methane on lactulose breath test. J Clin Gastroenterol. 2010;44(8):547–50. doi: 10.1097/MCG.0b013e3181c64c90
  • García-Collinot G, Madrigal-Santillán EO, Martínez-Bencomo MA, et al. Effectiveness of saccharomyces boulardii and metronidazole for small intestinal bacterial overgrowth in systemic sclerosis. Dig Dis Sci. 2020;65(4):1134–43. doi: 10.1007/s10620-019-05830-0
  • Frech TM, Khanna D, Maranian P, et al. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention. Clin Exp Rheumatol. 2011;29:22.
  • Low AHL, Teng GG, Pettersson S, et al. A double-blind randomized placebo-controlled trial of probiotics in systemic sclerosis associated gastrointestinal disease. Semin Arthritis Rheum. 2019;49(3):411–9. doi: 10.1016/j.semarthrit.2019.05.006
  • Marighela TF, Arismendi MI, Marvulle V, et al. Effect of probiotics on gastrointestinal symptoms and immune parameters in systemic sclerosis: a randomized placebo-controlled trial. Rheumatology (Oxford). 2019;58(11):1985–90. doi: 10.1093/rheumatology/kez160
  • Fretheim H, Chung BK, Didriksen H, et al. Fecal microbiota transplantation in systemic sclerosis: a double-blind, placebo-controlled randomized pilot trial. PloS One. 2020;15(5):e0232739. doi: 10.1371/journal.pone.0232739
  • Strahm N, Didriksen H, Fretheim H, et al. Effects of faecal microbiota transplantation on the small intestinal mucosa in systemic sclerosis. Rheumatology (Oxford). 2023;62:2918–2929.
  • Pannemans J, Corsetti M. Opioid receptors in the GI tract: targets for treatment of both diarrhea and constipation in functional bowel disorders? Curr Opin Pharmacol. 2018;43:53–8. doi: 10.1016/j.coph.2018.08.008
  • Sternini C, Patierno S, Selmer I, et al. The opioid system in the gastrointestinal tract. Neurogastroenterol Motil. 2004;16(Suppl 2):3–16. doi: 10.1111/j.1743-3150.2004.00553.x
  • Lavö B, Stenstam M, Nielsen AL. Loperamide in treatment of irritable bowel syndrome–a double-blind placebo controlled study. Scand J Gastroenterol Suppl. 1987;130:77–80. doi: 10.3109/00365528709091003
  • Hovdenak N. Loperamide treatment of the irritable bowel syndrome. Scand J Gastroenterol Suppl. 1987;130:81–84. doi: 10.3109/00365528709091004
  • Rao SSC, Quigley EMM, Chey WD, et al. Randomized placebo-controlled phase 3 trial of vibrating capsule for chronic constipation. Gastroenterology 1210. 6. 2023;164:1202. doi: 10.1053/j.gastro.2023.02.013
  • Nguyen AD, McMahan ZH, Volkmann ER. Micronutrient deficiencies in systemic sclerosis: a scoping review. Open Access Rheumatol. 2022;14:309–27. doi: 10.2147/OARRR.S354736
  • Codullo V, Cereda E, Crepaldi G, et al. Disease-related malnutrition in systemic sclerosis: evidences and implications. Clin Exp Rheumatol. 2015;33:190.
  • Natalello G, Bosello SL, Campochiaro C. Adherence to the mediterranean diet in Italian patients with systemic sclerosis: an epidemiologic survey. ACR Open Rheumatol. 2024 Jan;6(1):14–20.
  • Singh J, Mehendiratta V, Del Galdo F, et al. Immunoglobulins from scleroderma patients inhibit the muscarinic receptor activation in internal anal sphincter smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2009;297:1206. doi: 10.1152/ajpgi.00286.2009
  • Singh J, Cohen S, Mehendiratta V, et al. Effects of scleroderma antibodies and pooled human immunoglobulin on anal sphincter and colonic smooth muscle function. Gastroenterology. 2012;143(5):1308–18. doi: 10.1053/j.gastro.2012.07.109
  • Goldblatt F, Gordon TP, Waterman SA. Antibody-mediated gastrointestinal dysmotility in scleroderma. Gastroenterology. 2002;123(4):1144–50. doi: 10.1053/gast.2002.36057
  • Kumar S, Singh J, Kedika R, et al. Role of muscarinic-3 receptor antibody in systemic sclerosis: correlation with disease duration and effects of IVIG. Am J Physiol Gastrointest Liver Physiol. 2016;310:1052.
  • Smith AJ, Jackson MW, Wang F, et al. Neutralization of muscarinic receptor autoantibodies by intravenous immunoglobulin in Sjögren syndrome. Hum Immunol. 2005;66(4):411–6. doi: 10.1016/j.humimm.2005.01.020
  • Tandaipan J, Guillén-Del-Castillo A, Simeón-Aznar CP, et al. Immunoglobulins in systemic sclerosis management. A large multicenter experience. Autoimmun Rev. 2023;22(11):103441. doi: 10.1016/j.autrev.2023.103441
  • Raja J, Nihtyanova SI, Murray CD, et al. Sustained benefit from intravenous immunoglobulin therapy for gastrointestinal involvement in systemic sclerosis. Rheumatology (Oxford). 2016;55(1):115–9. doi: 10.1093/rheumatology/kev318
  • Matsuda KM, Yoshizaki A, Kuzumi A, et al. Rapid improvement of systemic sclerosis-associated intestinal pseudo-obstruction with intravenous immunoglobulin administration. Rheumatology (Oxford). 2023;62(9):3139–45. doi: 10.1093/rheumatology/kead093
  • Mendoza FA, DiMarino A, Cohen S, et al. Treatment of severe swallowing dysfunction in systemic sclerosis with IVIG: role of antimuscarinic antibodies. J Clin Med. 2022;11:6665. doi: 10.3390/jcm11226665
  • Kawaguchi Y, Nakamura Y, Matsumoto I, et al. Muscarinic-3 acetylcholine receptor autoantibody in patients with systemic sclerosis: contribution to severe gastrointestinal tract dysmotility. Ann Rheum Dis. 2009;68(5):710–4. doi: 10.1136/ard.2008.096545
  • DeSantana JM, Walsh DM, Vance C, et al. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep. 2008;10(6):492–9. doi: 10.1007/s11926-008-0080-z
  • Johnson M, Martinson M. Efficacy of electrical nerve stimulation for chronic musculoskeletal pain: a meta-analysis of randomized controlled trials. Pain. 2007;130(1):157–65. doi: 10.1016/j.pain.2007.02.007
  • Bellocchi C, Carandina A, Della Torre A, et al. Transcutaneous auricular branch vagal nerve stimulation as a non-invasive add-on therapeutic approach for pain in systemic sclerosis. RMD Open. 2023;9:e003265. doi: 10.1136/rmdopen-2023-003265
  • Sallam H, McNearney TA, Doshi D, et al. Transcutaneous electrical nerve stimulation (TENS) improves upper GI symptoms and balances the sympathovagal activity in scleroderma patients. Dig Dis Sci. 2007;52(5):1329–37. doi: 10.1007/s10620-006-9257-3
  • McNearney TA, Sallam HS, Hunnicutt SE, et al. Prolonged treatment with transcutaneous electrical nerve stimulation (TENS) modulates neuro-gastric motility and plasma levels of vasoactive intestinal peptide (VIP), motilin and interleukin-6 (IL-6) in systemic sclerosis. Clin Exp Rheumatol. 2013;31:140–150.
  • Richard N, Gyger G, Hoa S, et al. Immunosuppression does not prevent severe gastrointestinal tract involvement in systemic sclerosis. Clin Exp Rheumatol. 2021;39(Suppl 131):142–148. doi: 10.55563/clinexprheumatol/7683pg
  • Castellví I, Elhai M, Bruni C, et al. Safety and effectiveness of abatacept in systemic sclerosis: the EUSTAR experience. Semin Arthritis Rheum. 2020;50(6):1489–93. doi: 10.1016/j.semarthrit.2019.12.004
  • Clements PJ, Lachenbruch PA, Sterz M, et al. Cyclosporine in systemic sclerosis. Results of a forty-eight-week open safety study in ten patients. Arthritis Rheum. 1993;36:75–83. doi: 10.1002/art.1780360113
  • Papachristos DA, Nikpour M, Hair C, et al. Intravenous cyclophosphamide as a therapeutic option for severe refractory gastric antral vascular ectasia in systemic sclerosis. Intern Med J. 2015;45:1077–1081. doi: 10.1111/imj.12883
  • Schulz SW, O’Brien M, Maqsood M, et al. Improvement of severe systemic sclerosis-associated gastric antral vascular ectasia following immunosuppressive treatment with intravenous cyclophosphamide. J Rheumatol. 2009;36(8):1653–6. doi: 10.3899/jrheum.081247
  • Morrisroe K, Hansen D, Stevens W, et al. Gastric antral vascular ectasia in systemic sclerosis: a study of its epidemiology, disease characteristics and impact on survival. Arthritis Res Ther. 2022;24(1):103–1. doi: 10.1186/s13075-022-02790-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.