116
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Effects of salinity on physiological responses in the sesarmid crab Episesarma mederi (H. Milne Edwards, 1853)

ORCID Icon & ORCID Icon
Pages 480-490 | Received 02 May 2023, Accepted 03 Nov 2023, Published online: 03 Dec 2023

References

  • Árnason T, Magnadóttir B, Björnsson B, Steinarsson A, Björnsson BT. 2013. Effects of salinity and temperature on growth, plasma ions, cortisol and immune parameters of juvenile Atlantic cod (Gadus morhua). Aquaculture. 380:70–79. doi:10.1016/j.aquaculture.2012.11.036.
  • Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. 2021. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 241:108971. doi:10.1016/j.cbpc.2020.108971.
  • Boonsanit P, Pairohakul S. 2021. Effects of salinity on haemolymph osmolality, gill Na+/K+ ATPase and antioxidant enzyme activities in the male mud crab Scylla olivacea (Herbst, 1796). Marine Biology Research. 17(1):86–97. doi:10.1080/17451000.2021.1900496.
  • Carvan MJ, Di Giulio RT. 2015. Oxidative stress responses in aquatic and marine fishes. In: S. M. Roberts, J. P. Kehrer, L-O. Klotz, editor. Studies on experimental toxicology and pharmacology. Cham: Springer International Publishing; p. 481–493.
  • Castilho PC, Martins IA, Bianchini A. 2001. Gill Na+, K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae). Journal of Experimental Marine Biology and Ecology. 256(2):215–227. doi:10.1016/S0022-0981(00)00315-4.
  • Chen JC, Chia PG. 1996. Oxygen uptake and nitrogen excretion of juvenile Scylla serrata at different temperature and salinity levels. Journal of Crustacean Biology. 16(3):437–442. doi:10.2307/1548732.
  • Chung KF, Lin HC. 2006. Osmoregulation and Na, K-ATPase expression in osmoregulatory organs of Scylla paramamosain. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 144(1):48–57. doi:10.1016/j.cbpa.2006.02.003.
  • Corotto FS, Holliday CW. 1996. Branchial Na, K-ATPase and osmoregulation in the purple shore crab, Hemigrapsus nudus (Dana). Comparative Biochemistry and Physiology Part A: Physiology. 113(4):361–368. doi:10.1016/0300-9629(95)02076-4.
  • Fehsenfeld S, Weihrauch D. 2016. Mechanisms of acid–base regulation in seawater-acclimated green crabs (Carcinus maenas). Canadian Journal of Zoology. 94(2):95–107. doi:10.1139/cjz-2015-0132.
  • Fernandes FA, Dutra BK, Mosele F, Araujo ASR, Ferreira GD, Belló-Klein A, Kucharski LC, Vinagre AS, Da Silva RSM. 2018. Redox and metabolic strategies developed by anterior and posterior gills of the crab Neohelice granulata after short periods of hypo-or hyper-osmotic stress. Science of the Total Environment. 639:457–464. doi:10.1016/j.scitotenv.2018.05.162.
  • Freire CA, Sampaio FD. 2021. Stress and disease in aquaculture, and their effects on homeostasis and osmoregulation: the metabolic connection. In: FSB. Kibenge, B. Baldisserotto, RSM. Chong, editor. Aquaculture pharmacology. Massachusetts: Academic Press; p. 273–295.
  • Freire CA, Onken H, McNamara JC. 2008. A structure–function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 151(3):272–304. doi:10.1016/j.cbpa.2007.05.008.
  • Freire CA, Togni VG, Hermes-Lima M. 2011a. Responses of free radical metabolism to air exposure or salinity stress, in crabs (Callinectes danae and C. ornatus) with different estuarine distributions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 160(2):291–300. doi:10.1016/j.cbpa.2011.06.024.
  • Freire CA, Welker AF, Storey JM, Storey KB, Hermes-Lima M. 2011b. Oxidative stress in estuarine and intertidal environments (temperate and tropical). In: D. Abele, JP. Vázquez-Medina, T. Zenteno-Savin, editor. Oxidative stress in aquatic ecosystems. London: Wiley; p. 41–57.
  • Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F. 2022. Metals and oxidative stress in aquatic decapod crustaceans: a review with special reference to shrimp and crabs. Aquatic Toxicology. 242:106024. doi:10.1016/j.aquatox.2021.106024.
  • Gillikin DP. 2004. Osmoregulatory ability of Chiromantes ortmanni (Crosnier, 1965) subjected to dilute and hypersaline seawater. Crustaceana. 77(1):67–74. doi:10.1163/156854004323037892.
  • Gillikin DP, De Wachter B, Tack JF. 2004. Physiological responses of two ecologically important Kenyan mangrove crabs exposed to altered salinity regimes. Journal of Experimental Marine Biology and Ecology. 301(1):93–109. doi:10.1016/j.jembe.2003.09.024.
  • Gu H, Chang X, Huang W, Sokolova IM, Wei S, Sun L, Li S, Wang X, Hu M, Zeng J, Wang Y. 2021. Oxidative stress induced by nanoplastics in the liver of juvenile large yellow croaker Larimichthys crocea. Marine Pollution Bulletin. 170:112661. doi:10.1016/j.marpolbul.2021.112661.
  • Hartnoll RG. 1988. Evolution, systematics and geographical distribution. In: WW. Burggren, BR. McMahon, editor, Biology of the land crabs. Cambridge: Cambridge University Press; p. 6–54.
  • Hemnukul P. 2010. Effects of salinity and oxygen concentration on the immune system and infection in matured grapsid crab Neoepisesarma mederi (H. Milne Edwards, 1853) [master’s thesis]. Bangkok: Chulalongkorn University.
  • Henry RP, Garrelts EE, McCarty MM, Towle DW. 2002. Differential induction of branchial carbonic anhydrase and Na+/K+ ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. Journal of Experimental Zoology. 292(7):595–603. doi:10.1002/jez.10075.
  • Henry RP, Lucu Č, Onken H, Weihrauch D. 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Frontiers in Physiology. 3:431. doi:10.3389/fphys.2012.00431.
  • Holliday CW. 1985. Salinity-induced changes in gill Na, K-ATPase activity in the mud fiddler crab, Uca pugnax. Journal of Experimental Zoology. 233(2):199–208. doi:10.1002/jez.1402330206.
  • Hossain MA, Aktar S, Qin JG. 2016. Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia. Fish Physiology and Biochemistry. 42:1571–1580. doi:10.1007/s10695-016-0241-3.
  • Kristensen E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. Journal of Sea Research. 59(1–2):30–43. doi:10.1016/j.seares.2007.05.004.
  • Kristensen E, Bouillon S, Dittmar T, Marchand C. 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany. 89(2):201–219. doi:10.1016/j.aquabot.2007.12.005.
  • Laird CE, Haefner Jr PA. 1976. Effects of intrinsic and environmental factors on oxygen consumption in the blue crab, Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology. 22(2):171–178. doi:10.1016/0022-0981(76)90093-9.
  • Lassoued A, Khalloufi N, Saidani W, Khazri A, Ghanem-Boughanmi N, Bouayed J, Ben-Attia M. 2023. Effects of increased salinity on oxidative stress status in the freshwater mussel Unio ravoisieri. Chemistry and Ecology. 39(3):256–267.
  • Lauer MM, de Oliveira CB, Yano NLI, Bianchini A. 2012. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 156(3–4):140–147. doi:10.1016/j.cbpc.2012.08.001.
  • Lee BY, Ng NK, Ng PK. 2015. The taxonomy of five species of Episesarma De Man, 1895, in Singapore (Crustacea: Decapoda: Brachyura: Sesarmidae). Raffles Bulletin of Zoology. 31(Supplement):199–215.
  • Leone FA, Lucena MN, Fabri LM, Garçon DP, Fontes CF, Faleiros RO, Moraes CM, McNamara JC. 2020. Osmotic and ionic regulation, and modulation by protein kinases, FXYD2 peptide and ATP of gill (Na+, K+)-ATPase activity, in the swamp ghost crab Ucides cordatus (Brachyura, Ocypodidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 250:110507. doi:10.1016/j.cbpb.2020.110507.
  • Lerberg SB, Holland AF, Sanger DM. 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries. 23:838–853. doi:10.2307/1353001.
  • Lesser MP. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review of Physiology. 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001.
  • Li E, Chen L, Zeng C, Chen X, Yu N, Lai Q, Qin JG. 2007. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture. 265(1–4):385–390. doi:10.1016/j.aquaculture.2007.02.018.
  • Li Y, Wei L, Cao J, Qiu L, Jiang X, Li P, Song Q, Zhou H, Han Q, Diao X. 2016. Oxidative stress, DNA damage and antioxidant enzyme activities in the pacific white shrimp (Litopenaeus vannamei) when exposed to hypoxia and reoxygenation. Chemosphere. 144:234–240. doi:10.1016/j.chemosphere.2015.08.051.
  • Lin HC, Su YC, Su SH. 2002. A comparative study of osmoregulation in four fiddler crabs (Ocypodidae: Uca). Zoological Science. 19(6):643–650. doi:10.2108/zsj.19.643.
  • Liu Y, Wang WN, Wang AL, Wang JM, Sun RY. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture. 265(1–4):351–358. doi:10.1016/j.aquaculture.2007.02.010.
  • Lucu Č, Towle DW. 2003. Na++ K+-ATPase in gills of aquatic crustacea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 135(2):195–214. doi:10.1016/S1095-6433(03)00064-3.
  • Luquet CM, Weihrauch D, Senek M, Towle DW. 2005. Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulatus. Journal of Experimental Biology. 208(19):3627–3636. doi:10.1242/jeb.01820.
  • Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 101(1):13–30. doi:10.1016/j.aquatox.2010.10.006.
  • Ma Z, Zheng P, Guo H, Jiang S, Qin JG, Zhang D, Liu X. 2016. Salinity regulates antioxidant enzyme and Na+ K+-ATPase activities of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758). Aquaculture Research. 47(5):1481–1487. doi:10.1111/are.12606.
  • Macintosh DJ, Ashton EC, Tansakul V. 2002. Utilisation and knowledge of biodiversity in the Ranong Biosphere Reserve, Thailand. ITCZM Monograph Series. 7:29.
  • McNamara JC, Faria SC. 2012. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. Journal of Comparative Physiology B. 182:997–1014. doi:10.1007/s00360-012-0665-8.
  • Mégevand L, Theuerkauff D, L’épine C, Hermet S, Corse E, L’honoré T, Lignot JH, Sucré E. 2022. Diluted Seawater and Ammonia-N Tolerance of Two Mangrove Crab Species. New Insights to Understand the Vulnerability of Pristine Islands Ecosystems Organisms. Frontiers in Ecology and Evolution. 10: 839160.
  • Nanba T, Takahashi H, Abe T, Godo W, Ogoshi M, Sakamoto H, Tsutsui N, Sakamoto T. 2012. Hemolymph osmotic, ionic status, and branchial Na+/K+-ATPase activity under varying environmental conditions in the intertidal grapsid crab, Gaetice depressus. International Aquatic Research. 4:1–12. doi:10.1186/2008-6970-4-18.
  • Nancollas SJ, McGaw IJ. 2021a. Acclimation to tidal conditions alters the physiological responses of the green shore crab, Carcinus maenas, to subsequent emersion. Journal of Experimental Biology. 224(15):jeb242220. doi:10.1242/jeb.242220.
  • Nancollas SJ, McGaw IJ. 2021b. The role of tidal acclimation on the physiological responses of the green shore crab, Carcinus maenas, to thermal stress. Journal of Experimental Marine Biology and Ecology. 545:151630. doi:10.1016/j.jembe.2021.151630.
  • Ng PK, Davie PJ. 2002. A checklist of the brachyuran crabs of Phuket and western Thailand. Phuket Marine Biological Center Special Publication. 23(2):369–384.
  • Ng PKL. 1998. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Cephalopods, Crustaceans, Holothurians and Sharks FAO Rome. 2:687–1396.
  • Nordberg J, Arnér ES. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine. 31(11):1287–1312. doi:10.1016/S0891-5849(01)00724-9.
  • Normant M, Król M, Jakubowska M. 2012. Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. Journal of Experimental Marine Biology and Ecology. 416:215–220. doi:10.1016/j.jembe.2012.01.001.
  • Novo MS, Miranda RB, Bianchini A. 2005. Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda). Journal of Experimental Marine Biology and Ecology. 323(2):118–137. doi:10.1016/j.jembe.2005.03.004.
  • Omori K, Irawan B, Kikutani Y. 1998. Studies on the salinity and desiccation tolerances of Helice tridens and Helice japonica (Decapoda: Grapsidae). Hydrobiologia. 386:27–36. doi:10.1023/A:1003461911201.
  • Paital B, Chainy GBN. 2010. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 151(1):142–151. doi:10.1016/j.cbpc.2009.09.007.
  • Paital B, Chainy GBN. 2012. Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 155(2):228–237. doi:10.1016/j.cbpc.2011.08.009.
  • Péqueux A. 1995. Osmotic regulation in crustaceans. Journal of Crustacean Biology. 15(1):1–60. doi:10.2307/1549010.
  • Prakunweerawat S, Charoenpornniphat A. 2014. Distribution and abundance of sesarmidae Crabs in Family sesarmidae in Klong Chaiya mangrove estuary, Suratthani province. King Mongkut’s Agricultural Journal. 32(1):40–49. Thai.
  • Rahi ML, Ferdusy T, Wali Ahmed S, Khan MN, Aziz D, Salin KR. 2020. Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla olivacea). Aquaculture Research. 51(10):4290–4301. doi:10.1111/are.14772.
  • Ramaglia AC, de Castro LM, Augusto A. 2018. Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. Journal of Comparative Physiology B. 188:729–738. doi:10.1007/s00360-018-1167-0.
  • Regoli F, Bocchetti R, Filho DW. 2012. Spectrophotometric assays of antioxidants. In: Abele D, Zenteno-Savin T, Vázquez-Medina JP, editors. Oxidative stress in aquatic ecosystems. New York: Wiley-Blackwell; p. 367–380.
  • Rivera-Ingraham GA, Lignot JH. 2017. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. Journal of Experimental Biology. 220(10):1749–1760. doi:10.1242/jeb.135624.
  • Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles AL, Geny B, Lignot JH. 2016. Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function? Journal of Experimental Biology. 219(1):80–89.
  • Rodrigues AP, Oliveira PC, Guilhermino L, Guimaraes L. 2012. Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula. Marine Biology. 159:2061–2074. doi:10.1007/s00227-012-1992-8.
  • Romano N, Zeng C. 2012. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture. 334:12–23. doi:10.1016/j.aquaculture.2011.12.035.
  • Romano N, Wu X, Zeng C, Genodepa J, Elliman J. 2014. Growth, osmoregulatory responses and changes to the lipid and fatty acid composition of organs from the mud crab, Scylla serrata, over a broad salinity range. Marine Biology Research. 10(5):460–471. doi:10.1080/17451000.2013.819981.
  • Sau S, Nagesh TS, Trivedi RK, Dubey SK, Rout SK, Biswas I, Bhakta D. 2017. Species composition and habitats of macro-benthic crustaceans in the intertidal zones of Sundarban, West Bengal, India. Journal of Experimental Zoology India. 20(2):1103–1107.
  • Saucedo PE, Ocampo L, Monteforte M, Bervera H. 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture. 229(1–4):377–387. doi:10.1016/S0044-8486(03)00327-2.
  • Shi Y, Zhang G, Xu J, Liu Y, Yang M, Xie Y, Yan Y, Liu J, Lu G. 2022. Effects of salinity on survival, growth, haemolymph osmolality, gill Na+-K+-ATPase activity, respiration and excretion of the sword prawn Parapenaeopsis hardwickii. Aquaculture Research. 53(2):603–611. doi:10.1111/are.15604.
  • Shinji J, Strüssmann CA, Wilder MN, Watanabe S. 2009. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: osmoregulation, oxygen consumption, and ammonia excretion. Journal of Crustacean Biology. 29(2):269–272. doi:10.1651/08-2998R.1.
  • Storey KB. 1996. Oxidative stress: animal adaptations in nature. Brazilian Journal of Medical and Biological Research. 29:1715–1733.
  • Strefezza TF, De Andrade IM, Augusto A. 2019. Reduced pH and elevated salinities affect the physiology of intertidal crab Minuca mordax (Crustacea, Decapoda). Marine and Freshwater Behaviour and Physiology. 52(5):241–254. doi:10.1080/10236244.2019.1681898.
  • Thabet R, Ayadi H, Koken M, Leignel V. 2017. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia. 799:1–20. doi:10.1007/s10750-017-3232-1.
  • Theuerkauff D, Rivera-Ingraham GA, Mercky Y, Lejeune M, Lignot JH, Sucré E. 2018a. Effects of domestic effluent discharges on mangrove crab physiology: integrated energetic, osmoregulatory and redox balances of a key engineer species. Aquatic Toxicology. 196:90–103. doi:10.1016/j.aquatox.2018.01.003.
  • Theuerkauff D, Rivera-Ingraham GA, Roques JA, Azzopardi L, Bertini M, Lejeune M, Farcy E, Lignot JH, Sucré E. 2018b. Salinity variation in a mangrove ecosystem: a physiological investigation to assess potential consequences of salinity disturbances on mangrove crabs. Zoological Studies. 57:e36.
  • Thongtham N, Kristensen E. 2005. Carbon and nitrogen balance of leaf-eating sesarmid crabs (Neoepisesarma versicolor) offered different food sources. Estuarine, Coastal and Shelf Science. 65(1–2):213–222. doi:10.1016/j.ecss.2005.05.014.
  • Thongtham N, Kristensen E, Puangprasan SY. 2008. Leaf removal by sesarmid crabs in Bangrong mangrove forest, Phuket, Thailand; with emphasis on the feeding ecology of Neoepisesarma versicolor. Estuarine, Coastal and Shelf Science. 80(4):573–580. doi:10.1016/j.ecss.2008.09.017.
  • Thurman C, Hanna J, Bennett C. 2010. Ecophenotypic physiology: osmoregulation by fiddler crabs (Uca spp.) from the northern Caribbean in relation to ecological distribution. Marine and Freshwater Behaviour and Physiology. 43(5):339–356. doi:10.1080/10236244.2010.526407.
  • Torres G, Charmantier-Daures M, Chifflet S, Anger K. 2007. Effects of long-term exposure to different salinities on the location and activity of Na+–K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 147(2):460–465. doi:10.1016/j.cbpa.2007.01.020.
  • Urbina M, Paschke K, Gebauer P, Chaparro OR. 2010. Physiological energetics of the estuarine crab Hemigrapsus crenulatus (Crustacea: Decapoda: Varunidae): responses to different salinity levels. Journal of the Marine Biological Association of the United Kingdom. 90(2):267–273. doi:10.1017/S0025315409990889.
  • Urbina MA, Glover CN. 2015. Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). Journal of Experimental Marine Biology and Ecology. 473:7–15. doi:10.1016/j.jembe.2015.07.014.
  • Urzúa Á, Urbina MA. 2017. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: sodium regulation, respiration and excretion. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 210:35–43. doi:10.1016/j.cbpa.2017.05.010.
  • Weihrauch D, Fehsenfeld S, Quijada-Rodriguez AR. 2017. Nitrogen Excretion in Aquatic Crustaceans. In: D Weihrauch, M. O'Donnell, editor. Acid-Base Balance and Nitrogen Excretion in Invertebrates. Cham: Spriner Nature; p. 1–25.
  • Winch JJ, Hodgson AN. 2007. The effect of temperature and salinity on oxygen consumption in the brachyuran crab Cyclograpsus punctatus (Crustacea: Decapoda: Grapsidae). African Zoology. 42(1):118–123. doi:10.1080/15627020.2007.11407384.
  • Yeesin P, Bautip S, Chesoh S. 2018. Crab and shellfish occurrences in the newly-grown mangrove habitats in southern Thailand. IOP Conference Series: Earth and Environmental Science. 137(1):012052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.