77
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Intra- and interspecific variability in external morphology among three Symphodus species (Labridae)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 582-591 | Received 13 Jul 2023, Accepted 19 Dec 2023, Published online: 10 Jan 2024

References

  • Albrecht GH, Gelvin BR, Hartman SE. 1993. Ratios as a size adjustment in morphometrics. American Journal of Physical Anthropology. 91:441–468. doi:10.1002/ajpa.1330910404.
  • Alonzo SH. 2004. Uncertainty in territory quality affects the benefits of usurpation in a Mediterranean wrasse. Behavioral Ecology. 15:278–285. doi:10.1093/beheco/arh007.
  • Alonzo SH, Taborsky M, Wirtz P. 2000. Male alternative reproductive behaviors in a Mediterranean wrasse, Symphodus ocellatus: evidence from otoliths for multiple life-history pathways. Evolutionary Ecology Research. 2:997–1007.
  • Arigoni S, Francour P, Harmelin-Vivien M, Zaninetti L. 2002. Adaptive colouration of Mediterranean labrid fishes to the new habitat provided by the introduced tropical alga Caulerpa taxifolia. Journal of Fish Biology. 60:1486–1497. doi:10.1111/j.1095-8649.2002.tb02442.x.
  • Aydın M. 2018. Maximum length and age report of Sparus aurata (Linnaeus, 1758) in the Black Sea. Journal of Applied Ichthyology. 34:964–966. doi:10.1111/jai.13615.
  • Aydın M. 2021. The first data on the population parameters and morphometry of Mesogobius batrachocephalus (Pallas 1814) (Family: Gobiidae) in the southern Black Sea. Aquatic Research. 4:116–128. doi:10.3153/AR21009.
  • Aysel V, Erdugan H, Dural A, Tarakci B, Okudan ES. 2005. Marine algae and seagrasses of Giresun Shores (Black Sea, Turkey). Journal of the Black Sea/Mediterranean Environment. 11:241–255.
  • Bakhshalizadeh S, Abbasi K, Rostamzadeh Liafuie A, Bani A, Pavithran A, Tiralongo F. 2022. Morphometric analyses of phenotypic plasticity in habitat use in two Caspian Sea mullets. Journal of Marine Science and Engineering. 10:1398. doi:10.3390/jmse10101398.
  • Baliga VB, Law CJ. 2016. Cleaners among wrasses: Phylogenetics and evolutionary patterns of cleaning behavior within Labridae. Molecular Phylogenetics and Evolution. 94:424–435. doi:10.1016/j.ympev.2015.09.006.
  • Bauchot ML, Quignard JP. 1973. Labridae. In: Hureau JC, Monod T, editors. Checklist of the fishes of the north-eastern Atlantic and of the Mediterranean. Paris: UNESCO; p. 426–443.
  • Bilecenoğlu M, Kaya M, Cihangir B, Çiçek E. 2014. An updated checklist of the marine fishes of Turkey. Turkish Journal of Zoology. 38:901–929. doi:10.3906/zoo-1405-60.
  • Brraich OS, Akhter S. 2015. Morphometric characters and meristic counts of a fish, Crossocheilus latius latius (Hamilton-Buchanan) from Ranjit Sagar Wetland, India. International Journal of Fisheries and Aquatic Studies. 2:260–265.
  • Cardozo-Ferreira GC, Macieira RM, Francini-Filho RB, Joyeux JC. 2018. Inferring labrid functional roles through morphological and ecological traits. Marine Ecology Progress Series. 588:135–145. doi:10.3354/meps12422.
  • Carvalho GR. 1993. Evolutionary aspects of fish distribution: genetic variability and adaptation. Journal of Fish Biology. 43:53–73. doi:10.1111/j.1095-8649.1993.tb01179.x.
  • Costello MJ. 1991. Review of the biology of the wrasse (Labridae: Pisces) in northern Europe. Progress in Underwater Science. 16:29–51.
  • Cowman PF, Bellwood DR, van Herwerden L. 2009. Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution. 52:621–631. doi:10.1016/j.ympev.2009.05.015.
  • Darlington RB. 1990. Multiple regression and linear models. New York: McGraw-Hill.
  • Delariva RL, Agostinho AA. 2001. Relationship between morphology and diets of six neotropical loricariids. Journal of Fish Biology. 58:832–847. doi:10.1111/j.1095-8649.2001.tb00534.x.
  • Dobzansky T. 1970. Genetic of evolutionary process. New York: Columbia University Press.
  • Firmat C, Schliewen UK, Losseau M, Alibert P. 2012. Body shape differentiation at global and local geographic scales in the invasive cichlid Oreochromis mossambicus. Biological Journal of the Linnean Society. 105:369–381. doi:10.1111/j.1095-8312.2011.01802.x.
  • Fischer W, Bauchot ML, Schneider M. 1987. Fiches FAO identification des espèces pour les besoins de la pêche. (rev. 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. II. Commission des Communautés Européennes and FAO, Rome.
  • Fricke R, Eschmeyer WN, Fong JD. 2023. Eschmeyer's catalog of fishes: genera/species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Electronic version accessed 06 November 2023.
  • Friedman ST, Martinez CM, Price SA, Wainwright PC. 2019. The influence of size on body shape diversification across Indo-Pacific shore fishes. Evolution. 73:1873–1884. doi:10.1111/evo.13755.
  • Froese R, Pauly D. 2022. FishBase. World Wide Web Electronic Publication. www.fishbase.org, version (08/2022).
  • Gharaei A. 2012. Morphometric and meristic studies of snow trout Schizothorax zarudnyi (Nikolskii, 1897) as a threatened endemic fish. World Journal of Fish and Marine Sciences. 4:426–429. doi:10.5829/idosi.wjfms.2012.04.04.63123.
  • Halvorsen KT, Sørdalen TK, Durif C, Knutsen H, Olsen EM, Skiftesvik AB, Rustand TE, Bjelland RM, Vøllestad LA. 2016. Male-biased sexual size dimorphism in the nest building corkwing wrasse (Symphodus melops): implications for a size regulated fishery. ICES Journal of Marine Science: Journal du Conseil. 73:2586–2594. doi:10.1093/icesjms/fsw135.
  • Hanel R, Westneat M, Sturmbauer C. 2002. Phylogenetic relationships, evolution of broodcare behavior, and geographic speciation in the Wrasse Tribe Labrini. Journal of Molecular Evolution. 55:776–789. doi:10.1007/s00239-002-2373-6.
  • Huertas V, Bellwood DR. 2020. Trophic separation in planktivorous reef fishes: a new role for mucus? Oecologia. 192:813–822. doi:10.1007/s00442-020-04608-w.
  • Hughes EC, Edwards DP, Thomas GH. 2022. The homogenization of avian morphological and phylogenetic diversity under the global extinction crisis. Current Biology. 32:3830–3837.e3. doi:10.1016/j.cub.2022.06.018.
  • Hyndes GA, Platell ME, Potter IC. 1997. Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: implications for resource partitioning. Marine Biology. 128:585–598. doi:10.1007/s002270050125.
  • Johnson RA, Wichern DW. 2007. Applied multivariate statistical analysis, 6th ed. New Jersey: Prentice Hall.
  • Joshi KK, Nair RJ, Abdussamad EM, Thomas S, Kakati VS, Jasmine S, Varghese M, Sreeram MP, Sukumaran S, George RM, Manisseri MK. 2015. The Carangids of India- A monograph. Fish and Fisheries. 16:543–546. doi:10.1111/faf.12099.
  • Karadurmus U, Ustaoğlu D, Aydın M. 2022. Sex inversion, sexual dimorphism, and morphological differences of Spicara flexuosa (Sparidae). Journal of Ichthyology. 62:777–785. doi:10.1134/S0032945222050058.
  • Karidas TH, Argiridis N, Minos G. 2009. Size at sex reversal in blotched picarel Spicara maena (Linnaeus, 1758). In: Thermaikos Guilf. Proceeding 33rd Scientific Conference of Hellenic Association for Biological Sciences, Edessa.
  • Li Y, Burridge CP, Lv Y, Peng Z. 2021. Morphometric and population genomic evidence for species divergence in the Chimarrichthys fish complex of the Tibetan Plateau. Molecular Phylogenetics and Evolution. 159:107117. doi:10.1016/j.ympev.2021.107117.
  • Lisney TJ, Collin SP, Kelley JL. 2020. The effect of ecological factors on eye morphology in the western rainbowfish, Melanotaenia australis. Journal of Experimental Biology. 223:jeb223644. doi:10.1242/jeb.223644.
  • Mojekwu TO, Anumudu CI. 2015. Advanced techniques for morphometric analysis in fish. Journal of Aquaculture Research & Development. 06:354. doi:10.4172/2155-9546.1000354.
  • Narvaez P, Furtado M, Neto AI, Moniz I, Azevedo JMN, Soares MC. 2015. Temperate facultative cleaner wrasses selectively remove ectoparasites from their client-fish in the Azores. Marine Ecology Progress Series. 540:217–226. doi:10.3354/meps11522.
  • Pla S, Maynou F, Piferrer F. 2021. Hermaphroditism in fish: incidence, distribution and associations with abiotic environmental factors. Reviews in Fish Biology and Fisheries. 31:935–955. doi:10.1007/s11160-021-09681-9.
  • R Core Team. 2021. R: A language and environment for statistical computing [computer software]. Vienna: R Foundation for Statistical Computing.
  • Sadovy de Mitcheson Y, Liu M, Suharti S. 2010. Gonadal development in a giant threatened reef fish, the humphead wrasse Cheilinus undulatus, and its relationship to international trade. Journal of Fish Biology. 77:706–718. doi:10.1111/j.1095-8649.2010.02714.x.
  • Semmar N, Vaz-dos-Santos AM. 2020. Highlighting growth regulation processes in fish populations by a simplex simulation approach: application to Merluccius hubbsi stocks in the Southwestern Atlantic. ICES Journal of Marine Science. 77:1401–1413. doi:10.1093/icesjms/fsz240.
  • Sfakiotakis M, Lane DM, Davies JBC. 1999. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering. 24:237–252. doi:10.1109/48.757275.
  • Sibly RM, Baker J, Grady JM, Luna SM, Kodric-Brown A, et al. 2015. Fundamental insights into ontogenetic growth from theory and fish. Proceedings of the National Academy of Sciences. 112:13934–13939. doi:10.1073/pnas.1518823112.
  • Siqueira AC, Oliveira-Santos LGR, Cowman PF, Floeter SR. 2016. Evolutionary processes underlying latitudinal differences in reef fish biodiversity. Global Ecology and Biogeography. 25:1466–1476. doi:10.1111/geb.12506.
  • Tiralongo F, Tirnetta S. 2019. On the presence of a well-established population of Symphodus melops (Linnaeus, 1758) in the central Mediterranean Sea with notes on its habitat and ecology. Acta Adriatica. 59:219–224. doi:10.32582/aa.59.2.7.
  • Todd EV, Liu H, Muncaster S, Gemmell NJ. 2016. Bending genders: the biology of natural sex change in fish. Sexual Development. 10:223–241. doi:10.1159/000449297.
  • Tudela S. 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fisheries Research. 42:229–243. doi:10.1016/S0165-7836(99)00052-1.
  • Vella A, Abela B, Vella N. 2018. Molecular genetics and conservation assessment of Labridae species in Maltese waters, Central Mediterranean. In: Oray IK, editor. International Fisheries Symposium, 4–8 November 2018. Kyrenia, Cyprus: Cyprus Marine Science Foundation & Istanbul University of Aquatic Sciences; p. 133.
  • Villéger S, Brosse S, Mouchet M, Mouillot D, Vanni MJ. 2017. Functional ecology of fish: current approaches and future challenges. Aquatic Sciences. 79:783–801. doi:10.1007/s00027-017-0546-z.
  • Wainwright PC, Bellwood DR. 2002. Ecomorphology of feeding in coral reef fishes. In: Sale PF, editor. Coral reef fishes: dynamics and diversity in a complex ecosystem. San Diego, CA: Academic Press. p. 33–56.
  • Wainwright PC, Bellwood DR, Westneat MW. 2002. Ecomorphology of locomotion in labrid fishes. Environmental Biology of Fishes. 65:47–62. doi:10.1023/A:1019671131001.
  • Walker JA, Westneat MW. 1997. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae). Journal of Experimental Biology. 200:1549–1569. doi:10.1242/jeb.200.11.1549.
  • Walker JA, Westneat MW. 2002. Performance limits of labriform propulsion and correlates with fin shape and motion. Journal of Experimental Biology. 205:177–187. doi:10.1242/jeb.205.2.177.
  • Warner RR, Lejeune P. 1985. Sex change limited by paternal care: a test using four Mediterranean labrid fishes, genus Symphodus. Marine Biology. 87:89–99. doi:10.1007/BF00397010.
  • Warner RR, Robertson DR. 1978. Sexual patterns of the labroid fishes of the western Caribbean, I: the wrasses (Labridae). The Zoological Contributions of Andrew Smith. 254:1–27. doi:10.5479/si.00810282.254.
  • Westneat MW, Alfaro ME. 2005. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Molecular Phylogenetics and Evolution. 36:370–390. doi:10.1016/j.ympev.2005.02.001.
  • Wimberger PH. 1991. Plasticity of jaw and skull morphology in the neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution. 45:1545–1561. doi:10.2307/2409778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.