440
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile fabrication of TPGS-PCL polymeric nanoparticles for paclitaxel delivery to breast cancer: investigation of antiproliferation and apoptosis induction

, &
Article: 2281938 | Received 13 Feb 2023, Accepted 06 Nov 2023, Published online: 10 Jan 2024

References

  • Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):1–15. doi: 10.1001/jama.2018.19323.
  • Britt KL, Cuzick J, Phillips K-A. Key steps for effective breast cancer prevention. Nat Rev Cancer. 2020;20(8):417–436. doi: 10.1038/s41568-020-0266-x.
  • Fahad Ullah M. Breast cancer: current perspectives on the disease status, breast cancer metastasis. Adv Exp Med Biol. 2019;1152:51–64. doi: 10.1007/978-3-030-20301-6_4.
  • McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. doi: 10.1038/s41586-019-1799-6.
  • Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23. doi: 10.1016/j.breast.2022.08.010.
  • Hu C, Hart SN, Gnanaolivu R, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440–451. doi: 10.1056/NEJMoa2005936.
  • Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer. Cancer Cell. 2020;37(4):496–513. doi: 10.1016/j.ccell.2020.03.009.
  • Schünemann HJ, Lerda D, Quinn C, et al. Breast cancer screening and diagnosis: a synopsis of the european breast guidelines. Ann Intern Med. 2020;172(1):46–56. doi: 10.7326/M19-2125.
  • Yin L, Duan J-J, Bian X-W, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5.
  • Nielsen TO, Leung SCY, Rimm DL, et al. Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in breast cancer working group, JNCI. J Natl Cancer Inst. 2021;113(7):808–819. doi: 10.1093/jnci/djaa201.
  • Dorling L, Carvalho S, Allen J, et al. Breast cancer risk genes: association analysis in more than 113,000 women. New Eng J Med. 2021;384:428–439.
  • Ahmad A. Breast cancer statistics: recent trends. In: Breast cancer metastasis and drug resistance: challenges and progress. 2019. p. 1–7.
  • Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: 10.1259/bjr.20211033.
  • Wu J, Hicks C. Breast cancer type classification using machine learning. J Pers Med. 2021;11(2):61. doi: 10.3390/jpm11020061.
  • Vemuri SK, Banala RR, Mukherjee S, et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modelling studies. Mater Sci Eng C Mater Biol Appl. 2019;99:417–429. doi: 10.1016/j.msec.2019.01.123.
  • Juan A, Cimas FJ, Bravo I, et al. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int J Mol Sci. 2020;21(17):6018. doi: 10.3390/ijms21176018.
  • Shi X, Cheng Q, Hou T, et al. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol Ther. 2020;28(2):536–547. doi: 10.1016/j.ymthe.2019.11.020.
  • Peng F, Setyawati MI, Tee JK, et al. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol. 2019;14(3):279–286. doi: 10.1038/s41565-018-0356-z.
  • Gomathi AC, Rajarathinam SRX, Sadiq AM, et al. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Delivery Sci Technol. 2020;55:101376. doi: 10.1016/j.jddst.2019.101376.
  • Chaudhuri A, Kumar DN, Shaik RA, et al. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int J Mol Sci. 2022;23(17):10068. doi: 10.3390/ijms231710068.
  • Juan A, Cimas FJ, Bravo I, et al. An overview of antibody conjugated polymeric nanoparticles for breast cancer therapy. Pharmaceutics. 2020;12(9):802. doi: 10.3390/pharmaceutics12090802.
  • Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Semin Cancer Biol. 2021;69:226–237. doi: 10.1016/j.semcancer.2019.10.020.
  • Zhang W, Hong C, Pan C. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol Rapid Commun. 2019;40(2):e1800279. doi: 10.1002/marc.201800279.
  • Liu Y, Jiang Z, Hou X, et al. Functional lipid polymeric nanoparticles for oral drug delivery: rapid mucus penetration and improved cell entry and cellular transport. Nanomedicine. 2019;21:102075. doi: 10.1016/j.nano.2019.102075.
  • Günday C, Anand S, Gencer HB, et al. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res. 2020;10(3):706–720. doi: 10.1007/s13346-020-00736-1.
  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects. 2019;20:100397. doi: 10.1016/j.nanoso.2019.100397.
  • Rizwanullah M, Perwez A, Mir SR, et al. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: optimization, in vitro characterization and cell culture studies. Nanotechnology. 2021;32(41):415101. doi: 10.1088/1361-6528/ac1098.
  • Calzoni E, Cesaretti A, Polchi A, et al. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019;10(1):4. doi: 10.3390/jfb10010004.
  • Deirram N, Zhang C, Kermaniyan SS, et al. Such, pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun. 2019;40(10):e1800917. doi: 10.1002/marc.201800917.
  • Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626. doi: 10.3389/fphar.2021.601626.
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403. doi: 10.3390/nano10071403.
  • Tan C, Fan H, Ding J, et al. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater Today Bio. 2022;14:100246. doi: 10.1016/j.mtbio.2022.100246.
  • Yan H, Du X, Wang R, et al. Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces. 2021;205:111914. doi: 10.1016/j.colsurfb.2021.111914.
  • Guan Y, Wang L, Wang B, et al. Recent advances of D-α-tocopherol polyethylene glycol 1000 succinate based stimuli-responsive nanomedicine for cancer treatment. Curr Med Sci. 2020;40(2):218–231. doi: 10.1007/s11596-020-2185-1.
  • Wang Q, Zou C, Wang L, et al. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater. 2019;94:469–481. doi: 10.1016/j.actbio.2019.05.061.
  • Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi: 10.3390/molecules25163731.
  • Spirescu VA, Chircov C, Grumezescu AM, et al. Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview. Polymers (Basel). 2021;13(5):724. doi: 10.3390/polym13050724.
  • Palanikumar L, Al-Hosani S, Kalmouni M, et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol. 2020;3(1):95. doi: 10.1038/s42003-020-0817-4.
  • Sánchez A, Mejía SP, Orozco J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules. 2020;25(16):3760. doi: 10.3390/molecules25163760.
  • Zununi Vahed S, Fathi N, Samiei M, et al. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J Drug Target. 2019;27(3):292–299. doi: 10.1080/1061186X.2018.1491978.
  • Hedayati S, Niakousari M, Pour ZM. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment. Int J Biol Macromol. 2020;143:136–142. doi: 10.1016/j.ijbiomac.2019.12.003.
  • Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv. 2020;10(8):4218–4231. doi: 10.1039/C9RA10857B.
  • Jara MO, Catalan-Figueroa J, Landin M, et al. Finding key nanoprecipitation variables for achieving uniform polymeric nanoparticles using neurofuzzy logic technology. Drug Deliv Transl Res. 2018;8(6):1797–1806. doi: 10.1007/s13346-017-0446-8.
  • Zheng Y, You X, Guan S, et al. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced Colon cancer therapy. Adv Funct Mater. 2019;29(15):1808646. doi: 10.1002/adfm.201808646.
  • Porrang S, Rahemi N, Davaran S, et al. Direct surface modification of mesoporous silica nanoparticles by DBD plasma as a green approach to prepare dual-responsive drug delivery system. J Taiwan Inst Chem Eng. 2021;123:47–58. doi: 10.1016/j.jtice.2021.05.024.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 2021;50(44):16311–16325. doi: 10.1039/D1DT02611A.
  • Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, et al. Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci: Adv Mater Dev. 2021;6(3):351–363. doi: 10.1016/j.jsamd.2021.03.003.
  • Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, et al. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans. 2020;49(32):11385–11395. doi: 10.1039/D0DT01476A.
  • Mohan N, Mohamed Subarkhan MK, Ramesh R. Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organomet Chem. 2018;859:124–131. doi: 10.1016/j.jorganchem.2018.01.022.
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J. Chem. 2016;40(11):9813–9823. doi: 10.1039/C6NJ01936F.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Coordination behavior of acylthiourea ligands in their Ru(II)–benzene complexes─structures and anticancer activity. Organometallics. 2022;41(13):1621–1630. doi: 10.1021/acs.organomet.2c00127.
  • Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana CK, et al. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg Chim Acta. 2022;535:120863. doi: 10.1016/j.ica.2022.120863.
  • Giriraj K, Mohamed Kasim MS, Balasubramaniam K, et al. Various coordination modes of new coumarin Schiff bases toward cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organom Chem. 2022;36(3):e6536. doi: 10.1002/aoc.6536.
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. 2019;179:246–256. doi: 10.1016/j.ejmech.2019.06.061.
  • Balaji S, Mohamed Subarkhan MK, Ramesh R, et al. Synthesis and structure of arene Ru(II) N∧O-Chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics. 2020;39(8):1366–1375. doi: 10.1021/acs.organomet.0c00092.
  • Bernabeu E, Helguera G, Legaspi MJ, et al. Paclitaxel-loaded PCL–TPGS nanoparticles: in vitro and in vivo performance compared with abraxane®. Colloids Surf B Biointerfaces. 2014;113:43–50. doi: 10.1016/j.colsurfb.2013.07.036.
  • Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–R4. doi: 10.1016/0378-5173(89)90281-0.
  • Pillai SA, Sharma AK, Desai SM, et al. Characterization and application of mixed micellar assemblies of PEO-PPO star block copolymers for solubilization of hydrophobic anticancer drug and in vitro release. J Mol Liq. 2020;313:113543. doi: 10.1016/j.molliq.2020.113543.
  • Li Y, Zhi X, Lin J, et al. Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Mater Sci Eng C Mater Biol Appl. 2017;73:189–197. doi: 10.1016/j.msec.2016.12.067.
  • Rudrappa M, Rudayni HA, Assiri RA, et al. Plumeria Alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials. 2022;12(3):493. doi: 10.3390/nano12030493.
  • Mittal P, Vardhan H, Ajmal G, et al. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev Ind Pharm. 2019;45(3):365–378. doi: 10.1080/03639045.2018.1542706.
  • Zhou Q, Zhang L, Yang T, et al. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed. 2018;13:2921–2942. doi: 10.2147/IJN.S158696.
  • Ma G, Du X, Zhu J, et al. Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. J Drug Delivery Sci Technol. 2021;63:102493. doi: 10.1016/j.jddst.2021.102493.
  • Wang B, Hu W, Yan H, et al. Lung cancer chemotherapy using nanoparticles: enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother. 2021;136:111249. doi: 10.1016/j.biopha.2021.111249.
  • Sanna V, Singh CK, Jashari R, et al. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci Rep. 2017;7(1):41573. doi: 10.1038/srep41573.
  • Habibi A, Sadat Shandiz SA, Salehzadeh A, et al. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem. 2020;25(1):13–22. doi: 10.1007/s00775-019-01728-4.
  • Salehi S, Mirzaie A, Sadat Shandiz SA, et al. Chemical composition, antioxidant, antibacterial and cytotoxic effects of artemisia marschalliana sprengel extract. Nat Prod Res. 2017;31(4):469–472. doi: 10.1080/14786419.2016.1174234.
  • Yu S, Bi X, Yang L, et al. Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo. J Biomed Nanotechnol. 2019;15(6):1135–1148. doi: 10.1166/jbn.2019.2751.
  • Jang H, Zhi K, Wang J, et al. Enhanced therapeutic effect of paclitaxel with a natural polysaccharide carrier for local injection in breast cancer. Int J Biol Macromol. 2020;148:163–172. doi: 10.1016/j.ijbiomac.2020.01.094.
  • Basu SM, Yadava SK, Singh R, et al. Lipid nanocapsules co-encapsulating paclitaxel and salinomycin for eradicating breast cancer and cancer stem cells. Colloids Surf B Biointerfaces. 2021;204:111775. doi: 10.1016/j.colsurfb.2021.111775.
  • Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–1131. doi: 10.1016/S0142-9612(02)00445-3.