1,933
Views
1
CrossRef citations to date
0
Altmetric
Review

Review of counterfactual land change modeling for causal inference in land system science

ORCID Icon, &
Pages 1-24 | Received 28 Sep 2022, Accepted 20 Jan 2023, Published online: 03 Feb 2023

References

  • Aakkula, J., Kuussaari, M., Rankinen, K., Ekholm, P., Heliölä, J., Hyvönen, T., Kitti, L., & Salo, T. (2012). Follow-up study on the impacts of agri-environmental measures in Finland. In Evaluation of agri-environmental policies selected methodological issues and case studies (pp. 111–127). OECD Publishing. https://books.google.com/books?hl=en&lr=&id=3qeGMP4gI3QC&oi=fnd&pg=PA111&dq=Follow-up+study+on+the+impacts+of+agri-environmental+measures+in+Finland+2012+&ots=NwPX39nX2j&sig=2Rvus0DMsHOLjNBxKikOEkouoAg
  • Abdulkareem, S.A., Mustafa, Y.T., Augustijn, E.W., & Filatova, T. (2019). Bayesian networks for spatial learning: A workflow on using limited survey data for intelligent learning in spatial agent-based models. GeoInformatica, 23(2), 243–268. https://doi.org/10.1007/s10707-019-00347-0
  • Andam, K.S., Ferraro, P.J., Pfaff, A., Sanchez-Azofeifa, G.A., & Robalino, J.A. (2008). Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(42), 16089–16094. https://doi.org/10.1073/pnas.0800437105
  • Arima, E.Y., Richards, P., Walker, R., & Caldas, M.M. (2011). Statistical confirmation of indirect land use change in the Brazilian Amazon. Environmental Research Letters, 6(2), 024010. https://doi.org/10.1088/1748-9326/6/2/024010
  • Assaf, C., Adams, C., Ferreira, F.F., & França, H. (2021). Land use and cover modeling as a tool for analyzing nature conservation policies – a case study of Juréia-Itatins. Land Use Policy, 100, 104895. https://doi.org/10.1016//j.landusepol.2020.104895
  • Baker, W.L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–133. https://doi.org/10.1007/BF00137155
  • Barton, C.M., Ullah, I.I.T., Bergin, S.M., Sarjoughian, H.S., Mayer, G.R., Bernabeu-Auban, J.E., Heimsath, A.M., Acevedo, M.F., Riel-Salvatore, J.G., & Arrowsmith, J.R. (2016). Experimental socioecology: Integrative science for anthropocene landscape dynamics. Anthropocene, 13, 34–45. https://doi.org/10.1016/j.ancene.2015.12.004
  • Bell, E.J., & Hinojosa, R.C. (1977). Markov analysis of land use change: Continuous time and stationary processes. Socio-Economic Planning Sciences, 11(1), 13–17. https://doi.org/10.1016/0038-0121(77)90041-6
  • Bennett, A. (2010). Process tracing and causal inference. In H. Brady & D. Collier (Eds.), Rethinking Social Inquiry: Diverse tools, shared standards (second edition ed., pp. 207-220). Rowman and Littlefield Publishers.
  • Blackman, A., Pfaff, A., & Robalino, J. (2015). Paper park performance: Mexico’s natural protected areas in the 1990s. Global Environmental Change, 31, 50–61. https://doi.org/10.1016/J.GLOENVCHA.2014.12.004
  • Bradley, A.V., Rosa, I.M.D., Brandão, A., Crema, S., Dobler, C., Moulds, S., Ahmed, S.E., Carneiro, T., Smith, M.J., & Ewers, R.M. (2017). An ensemble of spatially explicit land-cover model projections: Prospects and challenges to retrospectively evaluate deforestation policy. Modeling Earth Systems and Environment, 3(4), 1215–1228. https://doi.org/10.1007//s40808-017-0376-y
  • Brown, D.G., Pontius, R.G., & Lange, M.D. (2013). Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 5(5), 452–457. https://doi.org/10.1016/J.COSUST.2013.07.012
  • Butsic, V., Lewis, D.J., Radeloff, V.C., Baumann, M., & Kuemmerle, T. (2017). Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic and Applied Ecology, 19, 1–10. https://doi.org/10.1016/j.baae.2017.01.005
  • Camacho Olmedo, M.T., Pontius, R.G., Paegelow, M., & Mas, J.F. (2015). Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling & Software, 69, 214–221. https://doi.org/10.1016/J.ENVSOFT.2015.03.003
  • Carlson, A., Zaehringer, J., Garrett, R., Felipe Bicudo Silva, R., Furumo, P., Raya Rey, A., Torres, A., Gon Chung, M., Li, Y., Liu, J., Carlson, A.K., Zaehringer, J.G., Garrett, R.D., Felipe Bicudo Silva, R., Furumo, P.R., Raya Rey, A.N., Torres, A., Gon Chung, M., Li, Y., & Liu, J. (2018). Toward rigorous telecoupling causal attribution: A systematic review and typology. Sustainability, 10(12), 4426. https://doi.org/10.3390/su10124426
  • Chiu, Y.W., & Wu, M. (2012). Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environmental Science & Technology, 46(16), 9155–9162. https://doi.org/10.1021/ES3002162
  • Coomes, O.T., Takasaki, Y., & Rhemtulla, J.M. (2011). Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 13925–13930. https://doi.org/10.1073/pnas.1012973108
  • Dávalos, L.M. (2018). The ghosts of development past: Deforestation and coca in western Amazonia. In The origins of cocaine (pp. 19–52). Routledge. https://doi.org/10.4324/9780429489389-8
  • Davis, K.F., Yu, K., Rulli, M.C., Pichdara, L., & D’odorico, P. (2015). Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nature geoscience, 8(10), 772–775. https://doi.org/10.1038/ngeo2540
  • Dearing, J.A., Braimoh, A.K., Reenberg, A., Turner, B.L., & der Leeuw, S. (2010). Complex land systems: The need for long time perspectives to assess their future. Ecology and Society, 15(4). https://doi.org/10.5751/ES-03645-150421
  • Deaton, A., & Cartwright, N. (2018). Understanding and misunderstanding randomized controlled trials. Social Science & Medicine, 210, 2–21. https://doi.org/10.1016/j.socscimed.2017.12.005
  • Denning, C.A., Mcdonald, R.I., & Christensen, J. (2010). Did land protection in Silicon Valley reduce the housing stock? Biological conservation, 143(5), 1087–1093. https://doi.org/10.1016/j.biocon.2010.01.025
  • Ehrensperger, A., de Bremond, A., Providoli, I., & Messerli, P. (2019). Land system science and the 2030 agenda: Exploring knowledge that supports sustainability transformation. Current Opinion in Environmental Sustainability, 38, 68–76. https://doi.org/10.1016/J.COSUST.2019.04.006
  • Fagan, M.E., Kim, D.H., Settle, W., Ferry, L., Drew, J., Carlson, H., Slaughter, J., Schaferbien, J., Tyukavina, A., Harris, N.L., Goldman, E., & Ordway, E.M. 2022.The expansion of tree plantations across tropical biomes. Nature Sustainability, 5(8), 681–688.https://doi.org/10.1038/s41893-022-00904-w
  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238. https://doi.org/10.1126/science.1152747
  • Ferraro, P.J. (2009). Counterfactual thinking and impact evaluation in environmental policy. New Directions for Evaluation, 2009(122), 75–84. https://doi.org/10.1002/ev.297
  • Filatova, T., Verburg, P.H., Parker, D.C., & Stannard, C.A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling & Software, 45, 1–7. https://doi.org/10.1016/j.envsoft.2013.03.017
  • Friis, C., Nielsen, J.Ø., Otero, I., Haberl, H., Niewöhner, J., & Hostert, P. (2016). From teleconnection to telecoupling: Taking stock of an emerging framework in land system science. Journal of Land Use Science, 11(2), 131–153. https://doi.org/10.1080/1747423X.2015.1096423
  • Godar, J., Persson, U.M., Tizado, E.J., & Meyfroidt, P. (2015). Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecological Economics, 112, 25–35. https://doi.org/10.1016/j.ecolecon.2015.02.003
  • Hagen, A. (2003). Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science, 17(3), 235–249. https://doi.org/10.1080/13658810210157822
  • Halaby, C.N. (2004). Panel models in sociological research: Theory into practice. Annual Review of Sociology, 30(1), 507–544. https://doi.org/10.1146/annurev.soc.30.012703.110629
  • Hannart, A., Pearl, J., Otto, F.E.L., Naveau, P., & Ghil, M. (2016). Causal counterfactual theory for the attribution of weather and climate-related events. Bulletin of the American Meteorological Society, 97(1), 99–110. https://doi.org/10.1175/BAMS-D-14-00034.1
  • Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., & Townshend, J.R.G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
  • He, J., Liu, Y., Yu, Y., Tang, W., Xiang, W., & Liu, D. (2013). A counterfactual scenario simulation approach for assessing the impact of farmland preservation policies on urban sprawl and food security in a major grain-producing area of China. Applied Geography, 37, 127–138. https://doi.org/10.1016/j.apgeog.2012.11.005
  • Hoeting, J.A., Madigan, D., Raftery, A.E., & Volinsky, C.T. (1999). Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors. Statistical Science, 14(4). https://doi.org/10.1214/ss/1009212519
  • Holland, P.W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396), 945–960. https://doi.org/10.1080/01621459.1986.10478354
  • Hsu, K.L., Moradkhani, H., & Sorooshian, S. (2009). A sequential Bayesian approach for hydrologic model selection and prediction. Water Resources Research, 45(1). https://doi.org/10.1029/2008WR006824
  • Huang, J., He, J., Liu, D., Li, C., & Qian, J. (2018). An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity. The Science of the Total Environment, 622–623, 1143–1152. https://doi.org/10.1016/j.scitotenv.2017.12.094
  • Jain, M. (2020). The benefits and pitfalls of using satellite data for causal inference. Review of Environmental Economics and Policy, 14(1), 157–169. https://doi.org/10.1093/reep/rez023
  • Jantz, C.A., Goetz, S.J., & Shelley, M.K. (2004). Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B, Planning & Design, 31(2), 251–271. https://doi.org/10.1068/b2983
  • Junquera, V., Meyfroidt, P., Sun, Z., Latthachack, P., & Grêt-Regamey, A. (2020). From global drivers to local land-use change: Understanding the northern Laos rubber boom. Environmental science & policy, 109, 103–115. https://doi.org/10.1016/j.envsci.2020.04.013
  • Killeen, T.J., Schroth, G., Turner, W., Harvey, C.A., Steininger, M.K., Dragisic, C., & Mittermeier, R.A. (2011). Stabilizing the agricultural frontier: Leveraging REDD with biofuels for sustainable development. Biomass & bioenergy, 35(12), 4815–4823. https://doi.org/10.1016/j.biombioe.2011.06.027
  • Kroeger, T., Klemz, C., Boucher, T., Fisher, J.R.B., Acosta, E., Cavassani, A.T., Dennedy-Frank, P.J., Garbossa, L., Blainski, E., Santos, R.C., Giberti, S., Petry, P., Shemie, D., & Dacol, K. (2019). Returns on investment in watershed conservation: Application of a best practices analytical framework to the rio camboriu water producer program, Santa Catarina, Brazil. The Science of the Total Environment, 657, 1368–1381. https://doi.org/10.1016/j.scitotenv.2018.12.116
  • Lambin, E.F., Meyfroidt, P., Rueda, X., Blackman, A., Börner, J., Cerutti, P.O., Dietsch, T., Jungmann, L., Lamarque, P., Lister, J., Walker, N.F., & Wunder, S. (2014). Effectiveness and synergies of policy instruments for land use governance in tropical regions. Global Environmental Change, 28, 129–140. https://doi.org/10.1016/j.gloenvcha.2014.06.007
  • Larsen, A.E., Meng, K., Kendall, B.E., & O’Hara, R.B. (2019). Causal analysis in control–impact ecological studies with observational data. Methods in Ecology and Evolution, 10(7), 924–934. https://doi.org/10.1111/2041-210X.13190
  • Lehtonen, H., & Rankinen, K. (2015). Impacts of agri-environmental policy on land use and nitrogen leaching in Finland. Environmental science & policy, 50, 130–144. https://doi.org/10.1016/j.envsci.2015.02.001
  • le Noe, J., Erb, K.-H., Matej, S., Magerl, A., Bhan, M., & Gingrich, S. (2021). Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case. ANTHROPOCENE, 33, 33. https://doi.org/10.1016/j.ancene.2020.100275
  • Ligmann-Zielinska, A., Siebers, P.O., Maglioccia, N., Parker, D., Grimm, V., Du, E.J., Cenek, M., Radchuk, V.T., Arbab, N.N., Li, S., Berger, U., Paudel, R., Robinson, D.T., Jankowski, P., An, L., & Ye, X. (2020). ‘One size does not fit all’: A roadmap of purpose-driven mixed-method pathways for sensitivity analysis of agent-based models. JASSS, 23(1). https://doi.org/10.18564/jasss.4201
  • Liu, J., Dou, Y., Batistella, M., Challies, E., Connor, T., Friis, C., Millington, J.D., Parish, E., Romulo, C.L., Silva, R.F.B., Triezenberg, H., Yang, H., Zhao, Z., Zimmerer, K.S., Huettmann, F., Treglia, M.L., Basher, Z., Chung, M.G., Herzberger, A., … Sun, J. (2018). Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Current Opinion in Environmental Sustainability, 33, 58–69. https://doi.org/10.1016/J.COSUST.2018.04.009
  • Magliocca, N.R., & Ellis, E.C. (2016). Evolving human landscapes: A virtual laboratory approach. Journal of Land Use Science, 11(6), 642–671. https://doi.org/10.1080/1747423X.2016.1241314
  • Magliocca, N.R., Ellis, E.C., Allington, G.R.H., de Bremond, A., Dell’angelo, J., Mertz, O., Messerli, P., Meyfroidt, P., Seppelt, R., & Verburg, P.H. (2018). Closing global knowledge gaps: Producing generalized knowledge from case studies of social-ecological systems. Global Environmental Change, 50, 1–14. https://doi.org/10.1016/j.gloenvcha.2018.03.003
  • Magliocca, N.R., Khuc, Q.V., Ellicott, E.A., & de Bremond, A. (20192). Archetypical pathways of direct and indirect land-use change caused by Cambodia’s economic land concessions. Ecology and Society, 24 (2). https://doi.org/10.5751/ES-10954-240225.
  • Magliocca, N.R., Khuc van, Q., de Bremond, A., & Ellicott, E.A. (2020). Direct and indirect land-use change caused by large-scale land acquisitions in Cambodia. Environmental Research Letters, 15(2), 024010. https://doi.org/10.1088/1748-9326/ab6397
  • Magliocca, N., McConnell, V., & Walls, M. (2018). Integrating global sensitivity approaches to deconstruct spatial and temporal sensitivities of complex spatial agent-based models. Journal of Artificial Societies and Social Simulation, 21(1). https://doi.org/10.18564/jasss.3625
  • Mahoney, J. (2008). Toward a unified theory of causality. Comparative political studies, 41(4–5), 412–436. https://doi.org/10.1177/0010414007313115
  • Ma, M., & Jin, Y. (2019). What if Beijing had enforced the 1st or 2nd greenbelt? – Analyses from an economic perspective. Landscape and Urban Planning, 182, 79–91. https://doi.org/10.1016/j.landurbplan.2018.10.012
  • Messina, J.P., Evans, T.P., Manson, S.M., Shortridge, A.M., Deadman, P.J., & Verburg, P.H. (2008). Complex systems models and the management of error and uncertainty. Journal of Land Use Science, 3(1), 11–25. https://doi.org/10.1080/17474230802047989
  • Meyfroidt, P. (2016). Approaches and terminology for causal analysis in land systems science. Journal of Land Use Science, 11(5), 501–522. https://doi.org/10.1080/1747423X.2015.1117530
  • Meyfroidt, P., Carlson, K.M., Fagan, M.E., Gutiérrez-Vélez, V.H., Macedo, M.N., Curran, L.M., Defries, R.S., Dyer, G.A., Gibbs, H.K., Lambin, E.F., Morton, D.C., & Robiglio, V. (2014). Multiple pathways of commodity crop expansion in tropical forest landscapes. Environmental Research Letters, 9(7), 074012. https://doi.org/10.1088/1748-9326/9/7/074012
  • Meyfroidt, P., de Bremond, A., Ryan, C.M., Archer, E., Aspinall, R., Chhabra, A., Camara, G., Corbera, E., DeFries, R., Díaz, S., Dong, J., Ellis, E.C., Erb, K.H., Fisher, J.A., Garrett, R.D., Golubiewski, N.E., Grau, H.R., Grove, J.M., Haberl, H., … Zu Ermgassen, E.K.H.J. (2022). Ten Facts about land systems for sustainability. Proceedings of the National Academy of Sciences of the United States of America, 119(7). https://doi.org/10.1073/PNAS.2109217118
  • Millington, J., Xiong, H., Peterson, S., Woods, J., Millington, J.D.A., Xiong, H., Peterson, S., & Woods, J. (2017). Integrating modelling approaches for understanding telecoupling: Global food trade and local land use. Land, 6(3), 56. https://doi.org/10.3390/land6030056
  • Minnerop, P., & Otto, F. (2019). Climate change and causation: Joining law and climate science on the basis of formal logic. Buffalo Environmental Law Journal, 27. https://doi.org/10.2139/ssrn.3522519
  • Mondal, P., & Southworth, J. (2010). Evaluation of conservation interventions using a cellular automata-Markov model. Forest Ecology and Management, 260(10), 1716–1725. https://doi.org/10.1016/j.foreco.2010.08.017
  • Munroe, D.K., Batistella, M., Friis, C., Gasparri, N.I., Lambin, E.F., Liu, J., Meyfroidt, P., Moran, E., & Nielsen, J.Ø. (2019). Governing flows in telecoupled land systems. Current Opinion in Environmental Sustainability, 38, 53–59. https://doi.org/10.1016/j.cosust.2019.05.004
  • Murray-Rust, D., Robinson, D.T., Guillem, E., Karali, E., & Rounsevell, M. (2014). An open framework for agent based modelling of agricultural land use change. Environmental Modelling & Software, 61, 19–38. https://doi.org/10.1016/j.envsoft.2014.06.027
  • Nagin, D.S., & Sampson, R.J. (2019). The real gold standard: Measuring counterfactual worlds that matter most to social science and policy. Annual Review of CriminologyAnnual Review of Criminology, 2(1), 123–145. https://doi.org/10.1146/annurev-criminol-011518-024838
  • Nolte, C., Gobbi, B., le Polain de Waroux, Y., Piquer-Rodríguez, M., Butsic, V., & Lambin, E.F. (2017). Decentralized land use zoning reduces large-scale deforestation in a major agricultural frontier. Ecological Economics, 136, 30–40. https://doi.org/10.1016/j.ecolecon.2017.02.009
  • Nolte, C., Gobbi, B., le Polain de Waroux, Y., Piquer-Rodríguez, M., Butsic, V., & Lambin, E.F. (2018, March 17). Challenges in attributing avoided deforestation to policies and actors: Lessons from provincial forest zoning in the argentine dry chaco. Ecological Economics, 150, 346–352. https://doi.org/10.1016/j.ecolecon.2018.03.010
  • O’sullivan, D., Evans, T., Manson, S., Metcalf, S., Ligmann-Zielinska, A., & Bone, C. (2016). Strategic directions for agent-based modeling: Avoiding the YAAWN syndrome. Journal of Land Use Science, 11(2), 177–187. https://doi.org/10.1080/1747423X.2015.1030463
  • Polhill, J.G., Hare, M., Bauermann, T., Anzola, D., Palmer, E., Salt, D., & Antosz, P. (2021). Using agent-based models for prediction in complex and wicked systems. Journal of Artificial Societies and Social Simulation, 24(3). https://doi.org/10.18564/jasss.4597
  • Pontius, R.G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
  • Pontius, R.G., Peethambaram, S., & Castella, J.-C. (2011). Comparison of three maps at multiple resolutions: A case study of land change simulation in cho don district, vietnam. Annals of the Association of American Geographers, 101(1), 45–62. https://doi.org/10.1080/00045608.2010.517742
  • Radosavljevic, S., Haider, L.J., Lade, S.J., & Schlüter, M. (2021). Implications of poverty traps across levels. World Development, 144, 105437. https://doi.org/10.1016/j.worlddev.2021.105437
  • Ramankutty, N., & Coomes, O.T. (2016). Land-use regime shifts: An analytical framework and agenda for future land-use research. Ecology and Society, 21(2). https://doi.org/10.5751/ES-08370-210201.
  • Rosenzweig, C., & Neofotis, P. (2013). Detection and attribution of anthropogenic climate change impacts. Wiley Interdisciplinary Reviews Climate Change, 4(2), 121–150. https://doi.org/10.1002/WCC.209
  • Roth, J., Sant’anna, P.H.C., Bilinski, A., & Poe, J. (2022). What’s trending in difference-in-differences? a synthesis of the recent econometrics literature. arXiv Preprint. https://doi.org/10.48550/arxiv.2201.01194.
  • Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701. https://doi.org/10.1037/h0037350
  • Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M.D., Muñoz-Marí, J., van Nes, E.H., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., … Zscheischler, J. (2019). Inferring causation from time series in Earth system sciences. Nature Communications, 10(1), 1–13. https://doi.org/10.1038/s41467-019-10105-3
  • Schlüter, M., Caniglia, G., Orach, K., Bodin, Ö., Magliocca, N., Meyfroidt, P., & Reyers, B. (2022). Why care about theories? Innovative ways of theorizing in sustainability science. Current Opinion in Environmental Sustainability, 54, 101154. https://doi.org/10.1016/J.COSUST.2022.101154
  • Schulp, C.J.E., Levers, C., Kuemmerle, T., Tieskens, K.F., & Verburg, P.H. (2019). Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy, 80, 332–344. https://doi.org/10.1016/j.landusepol.2018.04.030
  • Sesnie, S.E., Tellman, B., Wrathall, D., McSweeney, K., Nielsen, E., Benessaiah, K., Wang, O., & Rey, L. (2017). A spatio-temporal analysis of forest loss related to cocaine trafficking in Central America. Environmental Research Letters, 12(5), 054015. https://doi.org/10.1088/1748-9326/aa6fff
  • Stevenson, J.R., Villoria, N., Byerlee, D., Kelley, T., & Maredia, M. (2013). Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proceedings of the National Academy of Sciences, 110(21), 8363–8368. https://doi.org/10.1073/pnas.1208065110
  • Sun, S., Parker, D.C., Huang, Q., Filatova, T., Robinson, D.T., Riolo, R.L., Hutchins, M., & Brown, D.G. (2014). Market impacts on land-use change: An agent-based experiment. Annals of the Association of American Geographers, 104(3), 460–484. https://doi.org/10.1080/00045608.2014.892338
  • Tellman, B., Magliocca, N.R., Turner, B.L., & Verburg, P.H. (2020). Understanding the role of illicit transactions in land-change dynamics. Nature Sustainability, 3(3), 175–181. https://doi.org/10.1038/s41893-019-0457-1
  • Tellman, B., McSweeney, K., Manak, L., Devine, J.A., Sesnie, S., Nielsen, E., & Dávila, A. (2021). Narcotrafficking and land control in Guatemala and Honduras. Journal of Illicit Economies and Development, 3(1), 132. https://doi.org/10.31389/JIED.83
  • ten Broeke, G., van Voorn, G., & Ligtenberg, A. (2016). Which sensitivity analysis method should I use for my agent-based model? Journal of Artificial Societies and Social Simulation, 19(1). https://doi.org/10.18564/JASSS.2857
  • Teter, J., Yeh, S., Khanna, M., Berndes, G., & Du, C. (2018). Water impacts of u.S. biofuels: Insights from an assessment combining economic and biophysical models. Plos One, 13(9), e0204298. https://doi.org/10.1371/journal.pone.0204298
  • Tong, X., & Feng, Y. (2020). A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 34(5), 866–898. https://doi.org/10.1080/13658816.2019.1684499
  • Turner, B.L., Meyfroidt, P., Kuemmerle, T., Müller, D., & Roy Chowdhury, R. (2020). Framing the search for a theory of land use. Journal of Land Use Science, 15(4), 489–508. https://doi.org/10.1080/1747423X.2020.1811792
  • van Vliet, J., Bregt, A.K., Brown, D.G., van Delden, H., Heckbert, S., & Verburg, P.H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling & Software, 82, 174–182. https://doi.org/10.1016/J.ENVSOFT.2016.04.017
  • van Vliet, J., Hagen-Zanker, A., Hurkens, J., & van Delden, H. (2013). A fuzzy set approach to assess the predictive accuracy of land use simulations. Ecological modelling, 261–262, 32–42. https://doi.org/10.1016/j.ecolmodel.2013.03.019
  • Verburg, P.H. et al . (2015). Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12, 29–41. https://doi.org/10.1016/j.ancene.2015.09.004
  • Verburg, P.H., Alexander, P., Evans, T., Magliocca, N.R., Malek, Z., Rounsevell, M.D., & van Vliet, J. (2019). Beyond land cover change: Towards a new generation of land use models. Current Opinion in Environmental Sustainability, 38, 38. https://doi.org/10.1016/j.cosust.2019.05.002
  • Verburg, P.H., Erb, K., Mertz, O., & Espindola, G. (2013). Land system science: Between global challenges and local realities. Current Opinion in Environmental Sustainability, 5(5), 433–437. https://doi.org/10.1016/j.cosust.2013.08.001
  • Verburg, P.H., & Overmars, K.P. (2009). Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24(9), 1167–1181. https://doi.org/10.1007/s10980-009-9355-7
  • Visconti, P., Bakkenes, M., Smith, R.J., Joppa, L., & Sykes, R.E. (2015). Socio-economic and ecological impacts of global protected area expansion plans. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1681), 20140284. https://doi.org/10.1098/rstb.2014.0284
  • Waldner, D. (2012). Process tracing and causal mechanisms. The Oxford Handbook of Philosophy of Social Science, 65–84.
  • Xiong, C., Beckmann, V., & Tan, R. (2018). Effects of Infrastructure on Land Use and Land Cover Change (LUCC): The case of hangzhou international airport, China. Sustainability, 10(6), 2013. https://doi.org/10.3390/su10062013
  • Zu Ermgassen, E.K.H.J., Ayre, B., Godar, J., Bastos Lima, M.G., Bauch, S., Garrett, R., Green, J., Lathuillière, M.J., Löfgren, P., MacFarquhar, C., Meyfroidt, P., Suavet, C., West, C., & Gardner, T. (2020). Using supply chain data to monitor zero deforestation commitments: An assessment of progress in the Brazilian soy sector. Environmental Research Letters, 15(3), 035003. https://doi.org/10.1088/1748-9326/ab6497