272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Human activities affecting lesser flamingo (Phoeniconaias minor) habitat in Momella lakes, Tanzania

, , &
Pages 97-120 | Received 15 Aug 2023, Accepted 08 Apr 2024, Published online: 01 May 2024

References

  • Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
  • Aliber, M., & Hart, T. G. (2009). Should subsistence agriculture be supported as a strategy to address rural food insecurity? Agricultural Economics Research, Policy and Practice in Southern Africa, 48(4), 434–458. https://doi.org/10.1080/03031853.2009.9523835
  • Alkharabsheh, M. M., Alexandridis, T., Bilas, G., Misopolinos, N., & Silleos, N. (2013). Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia environmental sciences, 19, 912–921. https://doi.org/10.1016/j.proenv.2013.06.101
  • Anderson, D. M. (2009). Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean & Coastal Management, 52(7), 342–347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
  • Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
  • Ayala, A. J., Yabsley, M. J., & Hernandez, S. M. (2020). A review of pathogen transmission at the backyard chicken–Wild bird interface. Frontiers in Veterinary Science, 7, 539925. https://doi.org/10.3389/fvets.2020.539925
  • Baiphethi, M. N., & Jacobs, P. T. (2009). The contribution of subsistence farming to food security in South Africa. Agricultural Economics Research, Policy and Practice in Southern Africa, 48(4), 459–482. https://doi.org/10.1080/03031853.2009.9523836
  • Baker, N. E., & Baker, E. (2002). Important bird areas in Tanzania: A first inventory. WCST, Wildlife Conservation Society of Tanzania.
  • Barthwal, S. C., & Mathur, V. B. (2012). Teachers’ knowledge of and attitude toward wildlife and conservation. Mountain Research and Development, 32(2), 169–175, 167. https://doi.org/10.1659/MRD-JOURNAL-D-11-00040.1
  • Bashir, M. T., Ali, S., Ghauri, M., Adris, A., & Harun, R. (2013). Impact of excessive nitrogen fertilizers on the environment and associated mitigation strategies. Asian Journal Microbiology Biotechnology Environmental Science, 15(2), 213–221. https://doi.org/10.2139/ssrn.3358171
  • Bekele, W. B., & Ago, F. Y. (2022). Sample size for interview in qualitative research in social sciences: A guide to novice researchers. Research in Educational Policy and Management, 4(1), 42–50. https://doi.org/10.46303/repam.2022.3
  • Berg, M., Meehan, M., & Scherer, T. (2017). Environmental implications of excess fertilizer and manure on water quality. NDSU Extension Service, NM1281, 2. https://www.ndsu.edu/agriculture/sites/default/files/2022-08/nm1281_0.pdf
  • Bernard, H. R. (2013). Social research methods: Qualitative and quantitative approaches (2 ed.). Sage.
  • BirdLife. (2018). The IUCN red list of threatened species https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22697369A129912906.en. Retrieved February 18, 2022.
  • Borrini-Feyerabend, G., Johnston, J., & Pansky, D. (2012). Governance of protected areas. In G. Borrini-Feyerabend (Ed.), Managing protected areas (pp. 146–175). Routledge.
  • Chen, J., Sun, B.- M., Chen, D., Wu, X., Guo, L.- Z., & Wang, G. (2014). Land use changes and their effects on the value of ecosystem services in the small sanjiang plain in China. Scientific World Journal, https://doi.org/10.1155/2014/752846 2014 1–7
  • Chen, L., Wang, J., Fu, B., & Qiu, Y. (2001). Land-use change in a small catchment of northern loess plateau, China. Agriculture, Ecosystems & Environment, 86(2), 163–172. https://doi.org/10.1016/S0167-8809(00)00271-1
  • Childress, B., Nagy, S., Hughes, B., & Abebe, Y. (2008). International single species action plan for the conservation of the lesser flamingo (phoeniconaias minor). CMS Technical Series, 18, AEWA Technical Series No. 34, Bonn, Germany. https://www.cms.int/sites/default/files/publication/ts18_ssap_lesser_flamingo_3_0_0.pdf
  • Chisanga, K., Mbega, E., & Ndakidemi, P. A. (2019). Socio-economic factors for anthill soil utilization by smallholder farmers in Zambia. Sustainability, 11(18), 4849. https://doi.org/10.3390/su11184849
  • Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228. https://doi.org/10.1890/080216
  • Cole, L. J., Stockan, J., & Helliwell, R. (2020). Managing riparian buffer strips to optimise ecosystem services: A review. Agriculture, Ecosystems & Environment, 296, 106891. https://doi.org/10.1016/j.agee.2020.106891
  • Dawson, N. M., Coolsaet, B., Sterling, E. J., Loveridge, R., Gross-Camp, N. D., Wongbusarakum, S., Sangha, K. K., Scherl, L. M., Phuong Phan, H., Zafra-Calvo, N., & Lavey, W. G. (2021). The role of Indigenous peoples and local communities in effective and equitable conservation. https://doi.org/10.5751/ES-12625-260319
  • DeFries, R., Hansen, A., Turner, B., Reid, R., & Liu, J. (2007). Land use change around protected areas: Management to balance human needs and ecological function. Ecological Applications, 17(4), 1031–1038. https://doi.org/10.1890/05-1111
  • Devlin, M., & Brodie, J. (2023). Nutrients and eutrophication. In Marine pollution–monitoring, management and mitigation (pp. 75–100). Springer. https://doi.org/10.1007/978-3-031-10127-4_4
  • Devlin, J. M., Vaz, P. K., Coppo, M. J., & Browning, G. F. (2016). Impacts of poultry vaccination on viruses of wild bird. Current Opinion in Virology, 19, 23–29. https://doi.org/10.1016/j.coviro.2016.06.007
  • dos Santos, F. S., Johst, K., Huth, A., & Grimm, V. (2010). Interacting effects of habitat destruction and changing disturbance rates on biodiversity: Who is going to survive? Ecological Modelling, 221(23), 2776–2783. https://doi.org/10.1016/j.ecolmodel.2010.08.005
  • El-Hattab, M. M. (2015). Change detection and restoration alternatives for the Egyptian lake maryut. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 9–16. https://doi.org/10.1016/j.ejrs.2014.12.001
  • Esa, N. (2010). Environmental knowledge, attitude and practices of student teachers. International Research in Geographical & Environmental Education, 19(1), 39–50. https://doi.org/10.1080/10382040903545534
  • Felix, N., Kissui, B. M., Munishi, L., Treydte, A. C., & Romanach, S. S. (2022). Retaliatory killing negatively affects African lion (Panthera leo) male coalitions in the Tarangire-Manyara ecosystem, tanzania. PLOS ONE, 17(8), e0272272. https://doi.org/10.1371/journal.pone.0272272
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global Consequences of Land Use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
  • Gao, Y., & Zhang, W. (2009). LULC classification and topographic correction of landsat-7 etm+ imagery in the yangjia river watershed: The influence of DEM resolution. Sensors, 9(3), 1980–1995. https://doi.org/10.3390/s90301980
  • Ghiglieri, G., Balia, R., Oggiano, G., & Pittalis, D. (2010). Prospecting for safe (low fluoride) groundwater in the Eastern African Rift: The Arumeru District (Northern Tanzania). Hydrology and Earth System Sciences, 14(6), 1081–1091. doi:10.5194/hess-14-1081-2010
  • Githaiga, J. M. (2003). Ecological factors determining utilisation patterns and inter-lake movements of lesser flamingo (Phoenicopterus minor GEOFFROY) in Kenyan alkaline lakes. [ Unpublished PhD thesis]. Department of Zoology, University of Nairobi. Nairobi, Kenya.
  • Gong, J., Chen, L., Fu, B., Huang, Y., Huang, Z., & Peng, H. (2006). Effect of land use on soil nutrients in the loess hilly area of the loess plateau, China. Land Degradation & Development, 17(5), 453–465. https://doi.org/10.1002/ldr.701
  • Guida-Johnson, B., & Zuleta, G. A. (2013). Land-use land-cover change and ecosystem loss in the espinal ecoregion, Argentina. Agriculture, Ecosystems & Environment, 181, 31–40. https://doi.org/10.1016/j.agee.2013.09.002
  • Gusset, M., Swarner, M. J., Mponwane, L., Keletile, K., & McNutt, J. W. (2009). Human–wildlife conflict in northern Botswana: Livestock predation by endangered African wild dog lycaon pictus and other carnivores. Oryx, 43(1), 67–72. https://doi.org/10.1017/S0030605308990475
  • Halevi Hochwald, I., Green, G., Sela, Y., Radomyslsky, Z., Nissanholtz‐Gannot, R., & Hochwald, O. (2023). Converting qualitative data into quantitative values using a matched mixed‐methods design: A new methodological approach. Journal of Advanced Nursing, 79(11), 4398–4410. https://doi.org/10.1111/jan.15649
  • Happiness, T., Tarimo, M. C., Pantaleo, K., & Munishi, T. (2009). factors affecting maccoa duck oxyura maccoa population dynamics in the momella lakes of arusha national park, TANZANIA. https://nm-aist.academia.edu/HappinessNnko
  • Helliesen, M. S. (2012). Tangled up in blue: Tanzanite mining and conflict in mererani, tanzania. Critical African Studies, 4(7), 58–93. https://doi.org/10.1080/21681392.2012.10597799
  • Hill, L. Bowerman, W. Roos, J. Bridges, W. Anderson, M. (2013). Effects of water quality changes on phytoplankton and lesser flamingo Phoeniconaias minor populations at Kamfers Dam, a saline wetland near Kimberley, SouthAfrica. African Journal of Aquatic Science 38(3), 287–294. https://doi.org/10.2989/16085914.2013.833889
  • Hird, K., & Baden, E. (2023). Reducing harmful algal blooms in Michigan and the great lakes. Journal of Science Policy & Governance, 23(1). https://doi.org/10.38126/JSPG230104
  • Hong, N., Scharf, P. C., Davis, J. G., Kitchen, N. R., & Sudduth, K. A. (2007). Economically optimal nitrogen rate reduces soil residual nitrate. Journal of Environmental Quality, 36(2), 354–362. https://doi.org/10.2134/jeq2006.0173
  • Horning, N., Robinson, J. A., Sterling, E. J., Spector, S., & Turner, W. (2010). Remote sensing for ecology and conservation: A handbook of techniques. Oxford University Press.
  • Hua, L., Liu, J., Zhai, L., Xi, B., Zhang, F., Wang, H., Liu, H., Chen, A., & Fu, B. (2017). Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agriculture, Ecosystems & Environment, 245, 112–123. https://doi.org/10.1016/j.agee.2017.05.015
  • Hu, Y., Batunacun, Z. L., & Zhuang, D. (2019). Assessment of land-use and land-cover change in Guangxi, China. Scientific Reports, 9(1), 2189. https://doi.org/10.1038/s41598-019-38487-w
  • Hughes, A. O., Tanner, C. C., McKergow, L. A., & Sukias, J. P. S. (2016). Unrestricted dairy cattle grazing of a pastoral headwater wetland and its effect on water quality. Agricultural Water Management, 165, 72–81. https://doi.org/10.1016/j.agwat.2015.11.015
  • IPCC. (2006). 2006 IPCC Guidelines for national greenhouse gas inventories. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan (pp. 1–2). https://www.osti.gov/etdeweb/biblio/20880391.
  • Isenring, R. (2010). Pesticides and the loss of biodiversity. Pesticide Action Network Europe, London, 26. https://www.pan-europe.info/old/Campaigns/pesticides/documents/bees/Pesticides_and_the_loss_of_biodiversity.pdf.
  • Jansen, L. J., & DiGregorio, A. (2003). Land-use data collection using the “land cover classification system”: Results from a case study in Kenya. Land Use Policy, 20(2), 131–148. https://doi.org/10.1016/S0264-8377(02)00081-9
  • Juma, D. W., Wang, H., & Li, F. (2014). Impacts of population growth and economic development on water quality of a lake: Case study of lake Victoria Kenya water. Environmental Science and Pollution Research, 21(8), 5737–5746. https://doi.org/10.1007/s11356-014-2524-5
  • Kaggwa, M. N., Gruber, M., Oduor, S. O., & Schagerl, M. (2013). A detailed time series assessment of the diet of lesser flamingos: Further explanation for their itinerant behaviour. Hydrobiologia, 710(1), 83–93. https://doi.org/10.1007/s10750-012-1105-1
  • Kayet, N., & Pathak, K. (2015). Remote sensing and GIS based land use/land cover change detection mapping in Saranda forest, Jharkhand, India. International Research Journal Earth Science, 3(10), 1–6. https://www.researchgate.net/publication/298424808
  • Kegamba, J. J., Sangha, K. K., Wurm, P., & Garnett, S. T. (2022). A review of conservation-related benefit-sharing mechanisms in Tanzania. Global Ecology and Conservation, 33, e01955. https://doi.org/10.1016/j.gecco.2021.e01955
  • Kihwele, E. Howell, K. Lugomela, C. (2014). temporal changes in the lesser flamingos population (phoenicopterus minor) in relation to phytoplankton abundance in lake manyara, tanzania. Open Journal of Ecology, 4, 145–161, 17, Article 43809. https://doi.org/10.4236/oje.2014.43016
  • Kija, H. K., Ogutu, J. O., Mangewa, L. J., Bukombe, J., Verones, F., Graae, B. J., Kideghesho, J. R., Said, M. Y., & Nzunda, E. F. (2020). Land use and land cover change within and around the greater Serengeti ecosystem, Tanzania. American Journal of Remote Sensing, 8(1), 1. https://doi.org/10.11648/j.ajrs.20200801.11
  • Kinyondo, A., & Huggins, C. (2019). Resource nationalism in Tanzania: Implications for artisanal and small-scale mining. The Extractive Industries and Society, 6(1), 181–189. https://doi.org/10.1016/j.exis.2018.08.005
  • Kitalika, A. (2020). Land use change and temporal water quality dynamics on the slopes of Mount Meru [Doctoral Dissertation, NM-AIST]. https://doi.org/10.58694/20.500.12479/1310
  • Kitalika, A. J., Machunda, R., Komakech, H. C., & Njau, K. N. (2018). Land-use and land cover changes on the slopes of Mount Meru-Tanzania. Current World Environment, 13(3), 331–352. https://doi.org/10.12944/CWE.13.3.07
  • Kittelberger, K. D., Tanner, C. J., Orton, N. D., & Şekercioğlu, Ç. H. (2023). The value of community science data to analyze long-term avian trends in understudied regions: The state of birds in Türkiye. Avian Research, 14, 100140. https://doi.org/10.1016/j.avrs.2023.100140
  • Krienitz, L. (2018). The lesser flamingo. In L. Krienitz (Ed.), Lesser flamingos: Descendants of phoenix (pp. 3–18). Springer https://doi.org/10.1007/978-3-662-58163-6_1
  • Krienitz, L., Krienitz, D., Dadheech, P. K., Hübener, T., Kotut, K., Luo, W., Teubner, K., & Versfeld, W. D. (2016). Food algae for lesser flamingos: A stocktaking. Hydrobiologia, 775(1), 21–50. https://doi.org/10.1007/s10750-016-2706-x
  • Kumssa, T., & Bekele, A. (2014). Current population status and activity pattern of lesser flamingos (phoeniconaias minor) and greater flamingo (Phoenicopterus roseus) in Abijata-Shalla Lakes National Park (ASLNP), Ethiopia. International Journal of Biodiversity, 2014 1–8. https://doi.org/10.1155/2014/295362
  • Kundu, M. (2021). Diversity and quantity of macro-and microplastics in irrigation farms sourcing water from an urban river: a case of Arusha Tanzania (Doctoral dissertation). Tanzania: The Nelson Mandela African Institution of Science and Technology. https://doi.org/10.58694/20.500.12479/1649
  • Kyara, V. C., Rahman, M. M., & Khanam, R. (2021). Tourism expansion and economic growth in Tanzania: A causality analysis. Heliyon, 7(5), e06966. https://doi.org/10.1016/j.heliyon.2021.e06966
  • Lanz, B., Dietz, S., & Swanson, T. (2018). The expansion of modern agriculture and global biodiversity decline: An integrated assessment. Ecological Economics, 144, 260–277. https://doi.org/10.1016/j.ecolecon.2017.07.018
  • Lema, E., Machunda, R., & Njau, K. N. (2015). Assessment of agrochemical residues in wastewater from selected horticultural farms in Arusha, Tanzania. International Journal of Environmental Sciences, 6(2), 240–251. https://doi.org/10.6088/ijes.6028
  • Lihepanyama, D. L., Ndakidemi, P. A., & Treydte, A. C. (2022). Spatio–temporal water quality determines algal bloom occurrence and possibly lesser flamingo (phoeniconaias minor) presence in momella lakes, Tanzania. Water, 14(21), 3532. https://doi.org/10.3390/w14213532
  • Liu, J.- L., Liao, W.- H., Zhang, Z.- X., Zhang, H.- T., Wang, X.- J., & Na, M. (2007). Effect of phopshate fertilizer and manure on crop yield, soil P accumulation, and the environmental risk assessment. Agricultural Sciences in China, 6(9), 1107–1114. https://doi.org/10.1016/S1671-2927(07)60153-9
  • Lochmiller, C. R. (2021). Conducting thematic analysis with qualitative data. The Qualitative Report, 26(6), 2029–2044. https://doi.org/10.46743/2160-3715/2021.5008
  • Lugomela, C., Pratap, H. B., & Mgaya, Y.D. (2006). Cyanobacteria blooms— A possible cause of mass mortality of lesser flamingos in Lake Manyara and lake big momela, Tanzania. Harmful Algae, 5(5), 534–541. https://doi.org/10.1016/j.hal.2005.10.001
  • Lwankomezi, E. B., & Abwe, F. G. (2016). Conservation challenges and human-wildlife conflicts around Arusha National Park, tanzania. https://www.academia.edu/download/47266575/Lwankomezi___Abwe__2016__Human_Wildlife_conflicts_around_Arusha_Park.pdf
  • Martin, E. (2009). Understanding the factors responsible for the absence of African lion (Panthera leo) in Arusha National Park, Tanzania. University of Klagenfurt, Austria. https://www.academia.edu/download/36703922/Emanuel_Martin_Thesis_final.pdf
  • Marttila, O. (2011). The great savanna: the national parks of Tanzania and other key conservation areas. Auris Publishers.
  • Mekonen, S. (2020). Coexistence between human and wildlife: The nature, causes and mitigations of human wildlife conflict around Bale Mountains National Park, Southeast Ethiopia. BMC Ecology, 20(1), 51. https://doi.org/10.1186/s12898-020-00319-1
  • Mgimwa, E. F., John, J. R., & Lugomela, C. V. (2021). The influence of physical–chemical variables on phytoplankton and lesser flamingo (phoeniconaias minor) abundances in Lake Natron, Tanzania. African Journal of Ecology. https://doi.org/10.1111/aje.12863 59 (3) 667–675
  • Mmassy, E., Maliti, H. T., Nkwabi, A. K., Mwita, M., Mwakatobe, A., Ntalwila, J., Lowassa, A., Mtui, D. T., Liseki, S., & Lesio, N. (2018). Population status and trend of lesser flamingos at Lakes Natron and Manyara, Tanzania. Journal of the IUCN SSC WI Flamingo Specialist Group. https://www.researchgate.net/profile/Emmanuel-Mmassy-4/publication/331894267.
  • Mmbaga, N. E., Munishi, L. K., & Treydte, A. C. (2017). How dynamics and drivers of land use/land cover change impact elephant conservation and agricultural livelihood development in rombo, Tanzania. Journal of Land Use Science, 12(2–3), 168–181. https://doi.org/10.1080/1747423X.2017.1313324
  • Mng’ong’o, M., Munishi, L. K., & Ndakidemi, P. A. (2021). Characterization of land use influence on soil phosphate bioavailability in usangu agro-ecosystem-Tanzania. Environmental Challenges, 5, 100259. https://doi.org/10.1016/j.envc.2021.100259
  • Moisa, M. B., Negash, D. A., Merga, B. B., & Gemeda, D. O. (2021). Impact of land-use and land-cover change on soil erosion using the RUSLE model and the geographic information system: A case of temeji watershed, western Ethiopia. Journal of Water and Climate Change, 12(7), 3404–3420. https://doi.org/10.2166/wcc.2021.131
  • Msofe, N. K., Sheng, L., & Lyimo, J. (2019). Land use change trends and their driving forces in the kilombero valley floodplain, Southeastern Tanzania. Sustainability, 11(2), 505. https://doi.org/10.3390/su11020505
  • Nadhira, S., & Basuni, S. (2021). Implementation of the concept of conservation area buffer zone in indonesia. Jurnal Manajemen Hutan Tropika, 27(1), 32–32. https://doi.org/10.7226/jtfm.27.1.32
  • Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K., & Şekercioğlu, Ç. H. (2020). Monitoring the world’s bird populations with community science data. Biological Conservation, 248, 108653. https://doi.org/10.1016/j.biocon.2020.108653
  • Neumann, R. P. (1992). The social origins of natural resource conflict in Arusha National Park, Tanzania. University of California.
  • Newmark, W. D., Manyanza, D. N., Gamassa, D. G. M., & Sariko, H. I. (1994). The conflict between wildlife and local people living adjacent to protected areas in Tanzania: Human density as a predictor. Conservation Biology, 8(1), 249–255. https://doi.org/10.1046/j.1523-1739.1994.08010249.x
  • Ngailo, J., Mwakasendo, J., Kisandu, D., & Tippe, D. (2016). Rice farming in the Southern Highlands of Tanzania: Management practices, socio-economic roles and production constraints. European Journal Research Social Science, 4. https://www.researchgate.net/publication/317185270.
  • Nguyen, P., Shearer, E. J., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., Huynh, P., Braithwaite, D., Updegraff, G., Hsu, K., Kuligowski, B., Logan, W. S., & Sorooshian, S. (2019). The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Scientific Data, 6(1), 180296. https://doi.org/10.1038/sdata.2018.296
  • Nonga, M. R., Lie, E., Sandvik, M., & Skaare, J. (2011). Assessment of farming practices and uses of agrochemicals in Lake Manyara Basin, Tanzania. http://www.suaire.sua.ac.tz/handle/123456789/1381
  • Ntukey, L. T., Munishi, L. K., Kohi, E., & Treydte, A. C. (2022). Land use/cover change reduces elephant habitat suitability in the wami mbiki–saadani wildlife corridor, Tanzania. The Land, 11(2), 307. https://www.mdpi.com/2073-445X/11/2/307
  • Okello, M. M., & Yerian, S. (2009). Tourist satisfaction in relation to attractions and implications for conservation in the protected areas of the Northern circuit, Tanzania. Journal of Sustainable Tourism, 17(5), 605–625. https://doi.org/10.1080/09669580902928450
  • Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533–544. https://doi.org/10.1007/s10488-013-0528-y
  • Pálmai, T., Szabó, B., Kotut, K., Krienitz, L., & Padisák, J. (2020). Ecophysiology of a successful phytoplankton competitor in the African flamingo lakes: The green alga picocystis salinarum (picocystophyceae). Journal of Applied Phycology, 32(3), 1813–1825. https://doi.org/10.1007/s10811-020-02092-6
  • Palombo, M. R. (2021). Thinking about the biodiversity loss in this changing world. Geosciences, 11(9), 370. https://doi.org/10.3390/geosciences11090370
  • Patel, S. K., Verma, P., & Singh, G. S. (2019). Agricultural growth and land use land cover change in peri-urban India. Environmental Monitoring and Assessment, 191(9), 1–17. https://doi.org/10.1007/s10661-019-7736-1
  • Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-west district of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40(4), 689–697. https://doi.org/10.1007/s12524-011-0165-4
  • Ramiadantsoa, T., Hanski, I., & Ovaskainen, O. (2018). Responses of generalist and specialist species to fragmented landscapes. Theoretical Population Biology, 124, 31–40. https://doi.org/10.1016/j.tpb.2018.08.001
  • Rastogi, R. P., Sinha, R. P., & Incharoensakdi, A. (2014). The cyanotoxin-microcystins: Current overview. Reviews in Environmental Science and Bio/technology, 13(2), 215–249. https://doi.org/10.1007/s11157-014-9334-6
  • Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002
  • Roberts, P., & Priest, H. (2006). Reliability and validity in research. Nursing Standard, 20(44), 41–46. https://doi.org/10.7748/ns.20.36.41.s58
  • Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C., & Morales, L. (2018). Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landscape Ecology, 33(3), 439–453. https://doi.org/10.1007/s10980-018-0612-5
  • Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(4), 611. https://doi.org/10.4236/ijg.2017.84033
  • Said, M., Hyandye, C., Komakech, H. C., Mjemah, I. C., & Munishi, L. K. (2021). Predicting land use/cover changes and its association to agricultural production on the slopes of Mount Kilimanjaro, Tanzania. Annals of GIS, 27(2), 189–209. https://doi.org/10.1080/19475683.2020.1871406
  • Sanare, J. E., Valli, D., Leweri, C., Glatzer, G., Fishlock, V., & Treydte, A. C. (2022). A socio-ecological approach to understanding how land use challenges human-elephant coexistence in Northern Tanzania. Diversity, 14(7), 513. https://doi.org/10.3390/d14070513
  • Sanderson, E. W., Redford, K. H., Vedder, A., Coppolillo, P. B., & Ward, S. E. (2002). A conceptual model for conservation planning based on landscape species requirements. Landscape and Urban Planning, 58(1), 41–56. https://doi.org/10.1016/S0169-2046(01)00231-6
  • Sarmah, H., & Hazarika, B. B. (2012). Determination of reliability and validity measures of a questionnaire. Indian Journal of Education and Information Management, 5(11), 508–517.
  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 1, 287–292. https://doi.org/10.1016/j.apcbee.2012.03.047
  • Scanes, C. G. (2018). Human activity and habitat loss: Destruction, fragmentation, and degradation. In Animals and human society (pp. 451–482). Elsevier. https://doi.org/10.1016/B978-0-12-805247-1.00026-5
  • Scoon, R. N. (2018). Arusha national park (Mount Meru). In Geology of National Parks of Central/Southern Kenya and Northern Tanzania: Geotourism of the Gregory Rift Valley, Active Volcanism and Regional Plateaus (pp. 141–154). Springer International Publishing. https://doi.org/10.1007/978-3-319-73785-0_13.
  • Secor, A. J. (2010). Social surveys, interviews, and focus groups. In G. Basil & P. J. John, Research Methods in Geography: A Critical Introduction (Vol. 6, pp. 194–205). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6f02e095c200516c6530aa197d6aef13bb73fd99#page=216
  • Sharpley, A. N., McDowell, R. W., & Kleinman, P. J. A. (2001). Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant and Soil, 237(2), 287–307. https://doi.org/10.1023/A:1013335814593
  • Shirima, E. (2005). Benefits from dual purpose goats for crop and livestock production under small-scale peasant systems in Kondoa eroded areas, Tanzania. Livestock Research for Rural Development, 17, Article # 138. https://www.lrrd.cipav.org.co/lrrd17/12/shir17138.htm
  • Sokhanvar, A., Çiftçioğlu, S., & Javid, E. (2018). Another look at tourism-economic development nexus. Tourism Management Perspectives, 26, 97–106. https://doi.org/10.1016/j.tmp.2018.03.002
  • Suri, H. (2011). Purposeful sampling in qualitative research synthesis. Qualitative Research Journal, 11(2), 63–75. https://doi.org/10.3316/QRJ1102063
  • Tahiru Doke, D. A., & Baatuuwie, B. N. (2020). Effect of land use and land cover changes on water quality in the nawuni catchment of the white volta basin, northern region, Ghana. Applied Water Science, 10(8), 1–14. https://doi.org/10.1007/s13201-020-01272-6
  • Tiwari, M. K., & Saxena, A. (2011). Change detection of land use/landcover pattern in an around mandideep and obedullaganj area, using remote sensing and GIS. International Journal Technology Engineering System, 2(3), 398–402.
  • Tuite, C. H.Tuite. (2000). The distribution and density of Lesser Flamingos in East Africa in relation to food availability and productivity. Waterbirds, 52–63. https://doi.org/10.2307/1522147
  • Twisa, S., & Buchroithner, M. F. (2019). Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. The Land, 8(9), 136. https://doi.org/10.3390/land8090136
  • URT. (2009). Tanzania national parks. https://www.tanzaniaparks.go.tz/
  • URT. (2010). Wildlife division. Tanzania national single species action plan for the conservation of lesser flamingo (phoeniconaias minor). Ministry of Natural Resources and Tourism, Dar es Salaam,Tanzania.
  • URT. (2013). 2012 Population and housing census: population distribution by administrative areas. Dar es. National Bureau of Statistics. https//www.nbs.go.tz
  • URT. (2015). Tanzania Tourism Sector Report 2015: https://www.tanzaniainvest.com/tourism/tanzania-tourism-sector-report.
  • URT. (2017). Prime minister’s office regional administration and local government, Meru District Council Socio–economic Profile.
  • URT. (2022). The 2022 Population and Housing Census: Administrative Units Population Distribution Report; Tanzania, December. https://www.nbs.go.tz/nbs/takwimu/Census2022/Administrative_units_Population_Distribution_Report_Tanzania_volume1a.pdf
  • URT. (2023). Arusha National Park. https://www.arushapark.com/. Retrieved on December, 26.
  • Veldhuis, M. P., Ritchie, M. E., Ogutu, J. O., Morrison, T. A., Beale, C. M., Estes, A. B, Ojwang, G. O., Parr, C. L., Probert, J., Wargute, P. W., Hopcraft, G. C., & Olff, H. (2019). The Serengeti squeeze: Cross-boundary human impacts compromise an iconic protected ecosystem. Science, 363(6434), 1424–1428. http://eprints.gla.ac.uk/183914/1/183914.pdf
  • Vidon, P., Campbell, M. A., & Gray, M. (2008). Unrestricted cattle access to streams and water quality in till landscape of the midwest. Agricultural Water Management, 95(3), 322–330. https://doi.org/10.1016/j.agwat.2007.10.017
  • Vijay, V. (2018). Understanding the impacts of agricultural expansion on biodiversity and habitat loss. [Duke University]. https://hdl.handle.net/10161/16968.
  • Walton, C. R., Zak, D., Audet, J., Petersen, R. J., Lange, J., Oehmke, C., Wichtmann, W., Kreyling, J., Grygoruk, M., Jabłońska, E., Kotowski, W., Wiśniewska, M. M., Ziegler, R., & Hoffmann, C. (2020). Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Science of the Total Environment, 727, 138709. https://doi.org/10.1016/j.scitotenv.2020.138709
  • Wang, M., Duan, L., Wang, J., Peng, J., & Zheng, B. (2020). Determining the width of lake riparian buffer zones for improving water quality base on adjustment of land use structure. Ecological Engineering, 158, 106001. https://doi.org/10.1016/j.ecoleng.2020.106001
  • Weng, Q. (2001). A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014. https://doi.org/10.1080/01431160118847
  • Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R., & Mor, S. M. (2015). Global trends in infectious diseases at the wildlife–livestock interface. Proceedings of the National Academy of Sciences, 112(31), 9662–9667. https://doi.org/10.1073/pnas.1422741112
  • Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O., & Brashares, J. S. (2008). Accelerated human population growth at protected area edges. Science, 321(5885), 123–126. https://doi.org/10.1126/science.1158900
  • Wubie, M. A., Assen, M., & Nicolau, M. D. (2016). Patterns, causes and consequences of land use/cover dynamics in the gumara watershed of lake Tana basin, Northwestern Ethiopia. Environmental Systems Research, 5(1), 8. https://doi.org/10.1186/s40068-016-0058-1
  • Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 6(5), e1373. https://doi.org/10.1002/wat2.1373
  • Yanda, P., & Shishira, E. (2001). Forestry conservation and resource utilisation on the southern slopes of mount kilimanjaro: Trends, conflicts and resolutions. Water Resources Management in the Pangani River Basin: Challenges and Opportunities, 104–117. http://repository.costech.or.tz/handle/123456789/9695
  • Zahoor, I., & Mushtaq, A. (2023). Water pollution from agricultural activities: A critical global review. International Journal of Chemical and Biochemical Sciences, 23, 164–176. https://www.iscientific.org/wp-content/uploads/2023/05/19-IJCBS-23-23-24.pdf
  • Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects. Toxins (Basel), 5(10), 1896–1917. https://doi.org/10.3390/toxins5101896