396
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Towards real-time predictions using emulators of agent-based models

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 29-46 | Received 15 Mar 2021, Accepted 13 May 2022, Published online: 05 Jun 2022

References

  • Baker, E., Challenor, P., & Eames, M. (2019). Diagnostics for stochastic Gaussian process emulators. arXiv:1902.01289 [stat.ME]. https://arxiv.org/abs/1902.01289
  • Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., & Nagel, K. (2009). Matsim-t: Architecture and simulation times. In A. Bazzan & F. Klügl(Eds.), Multi-agent systems for traffic and transportation engineering (pp. 57–78). IGI Global.
  • Barnes, C. M., Ghouri, A., & Lewis, P. R. (2021). Explaining evolutionary agent-based models via principled simplification. Artificial Life, 27(3–4), 143–163. https://doi.org/10.1162/artl_a_00339
  • Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics, 51(4), 425–438. https://doi.org/10.1198/TECH.2009.08019
  • Bijak, J., Hilton, J., Silverman, E., & Cao, V. D. (2013). From agent-based models to statistical emulators. Joint Eurostat/UNECE Work Session On Demographic Projections (pp. 12).
  • Bonabeau, E. (2002). Agent based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(90003), 7280–7287. https://doi.org/10.1073/pnas.082080899
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Clay, R., Kieu, L.-M., Ward, J. A., Heppenstall, A., & Malleson, N. (2020). Advances in practical applications of agents, multi-agent systems, and trustworthiness.The PAAMS collection. In Y. Demazeau, T. Holvoet, J. M. Corchado, & S. Costantini (Eds.), Towards realtime crowd simulation under uncertainty using an agent-based model and an unscented Kalman filter (Vol. 12092, pp. 68–79). Springer.
  • Conti, S., Gosling, J. P., Oakley, J. E., & O’Hagan, A. (2009). Gaussian process emulation of dynamic computer codes. Biometrika, 96(3), 663–676. https://doi.org/10.1093/biomet/asp028
  • Conti, S., & O’Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic computer models. Journal of Statistical Planning and Inference, 140(3), 640–651. https://doi.org/10.1016/j.jspi.2009.08.006
  • Deissenberg, C., Van Der Hoog, S., & Dawid, H. (2008). Eurace: A massively parallel agent-based model of the European economy. Applied Mathematics and Computation, 204(2), 541–552. https://doi.org/10.1016/j.amc.2008.05.116
  • Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E. (2018). The effects of labour market reforms upon unemployment and income inequalities: An agent-based model. Socio-Economic Review, 16(4), 687–720. https://doi.org/10.1093/ser/mwx054
  • Farah, M., Birrell, P., Conti, S., & Angelis, D. D. (2014). Bayesian emulation and calibration of a dynamic epidemic model for A/H1n1 influenza. Journal of the American Statistical Association, 109(508), 1398–1411. https://doi.org/10.1080/01621459.2014.934453
  • Heard, D. (2014). Statistical inference utilizing agent based models [PhD thesis]. Duke University.
  • Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803), 487. https://doi.org/10.1038/35035023
  • Henein, C. M., & White, T. (2005). Agent-based modelling of forces in crowds. In P. Davidsson, B. Logan, & K. Takadama (Eds.), Multi-agent and multi-agent-based simulation (pp. 173–184). Springer.
  • Higdon, D., Gattiker, J., Williams, B., & Rightley, M. (2008). Computer model calibration using high-dimensional output. Journal of the American Statistical Association, 103(482), 570–583. https://doi.org/10.1198/016214507000000888
  • Hilton, J. (2017). Managing uncertainty in agent-based demographic models [PhD thesis]. University of Southam- ton
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Kieu, L.-M., Malleson, N., & Heppenstall, A. (2020). Dealing with uncertainty in agent-based models for short- term predictions. Royal Soc Ety Open Science, 7(1), 191074. https://doi.org/10.1098/rsos.191074
  • Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Chalikov, D. V. (2005). New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. Monthly Weather Review, 133(5), 1370–1383. https://doi.org/10.1175/MWR2923.1
  • Lafuerza, L. F., Dyson, L., Edmonds, B., & McKane, A. J. (2016a). Simplification and analysis of a model of social interaction in voting. The European Physical Journal. B, 89(7), 159. https://doi.org/10.1140/epjb/e2016-70062-2
  • Lafuerza, L. F., Dyson, L., Edmonds, B., & McKane, A. J. (2016b). Staged models for interdisciplinary research. PloS one, 11(6), e0157261. https://doi.org/10.1371/journal.pone.0157261
  • Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A., & Heppenstall, A. (2020). Simulating crowds in real time with agent-based modelling and a particle filter. Journal of Artificial Societies and Social Simulation, 23(3), 3. https://doi.org/10.18564/jasss.4266
  • Moutoussamy, V., Nanty, S., & Pauwels, B. (2015). Emulators for stochastic simulation codes. ESAIM: Proceedings and Surveys, 48 , 116–155. https://doi.org/10.1051/proc/201448005
  • Niemann, J.-H., Winkelmann, S., Wolf, S., & Schütte, C. (2021). Agent-based modeling: Population limits and large timescales. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(3), 033140. https://doi.org/10.1063/5.0031373
  • Oakley, J., & O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89(4), 769–784. https://doi.org/10.1093/biomet/89.4.769
  • Oyebamiji, O. K., Wilkinson, D. J., Jayathilake, P. G., Curtis, T. P., Rushton, S. P., Li, B., & Gupta, P. (2017). Gaussian process emulation of an individual-based model simulation of microbial communities. Journal of Com Putational Science, 22, 69–84. https://doi.org/10.1016/j.jocs.2017.08.006
  • Oyebamiji, O. K., Wilkinson, D. J., Li, B., Jayathilake, P. G., Zuliani, P., & Curtis, T. P. (2019). Bayesian emulation and calibration of an individual-based model of microbial communities. Journal of Computational Science, 30, 194–208. https://doi.org/10.1016/j.jocs.2018.12.007
  • Rasouli, S., & Timmermans, H. (2013). Using emulators to approximate predicted performance indicators of complex microsimulation and multiagent models of travel demand. Transportation Letters, 5(2), 96–103. https://doi.org/10.1179/1942786713Z.0000000008
  • Rhodes, D. M., Holcombe, M., & Qwarnstrom, E. E. (2016). Reducing complexity in an agent based reaction model—benefits and limitations of simplifications in relation to run time and system level output. Biosystems, 147, 21–27. https://doi.org/10.1016/j.biosystems.2016.06.002
  • Schoenharl, T., & Madey, G. (2011). Design and implementation of an agent-based simulation for emergency response and crisis management. Journal of Algorithms & Computational Technology, 5(4), 601–622. https://doi.org/10.1260/1748-3018.5.4.601
  • Shrestha, D. L., Kayastha, N., & Solomatine, D. P. (2009). A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrology and Earth System Sciences, 13(7), 1235–1248. https://doi.org/10.5194/hess-13-1235-2009
  • Swarup, S., & Mortveit, H. S. (2020). Live simulations. Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent. Systems, AAMAS ’20, Auckland, New Zealand. (pp. 1721–1725). International Foundation for Autonomous Agents and Multiagent Systems.
  • Tregubov, A., & Blythe, J. (2020). Optimization of large-scale agent-based simulations through automated abstraction and simplification. International Workshop on Multi-Agent Systems and Agent-Based Simulation, Auckland, New Zealand. (pp. 81–93). Springer.
  • Wang, M., & Hu, X. (2015). Data assimilation in agent based simulation of smart environments using particle filters. Simulation Modelling Practice and Theory, 56(56), 36–54. https://doi.org/10.1016/j.simpat.2015.05.001
  • Zhou, B., Wang, X., & Tang, X. (2012). Understanding collective crowd behaviors: Learning a mixture model of dynamic pedestrian-agents In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 2871–2878), Providence, RI: IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.