149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

How network properties and epidemic parameters influence stochastic SIR dynamics on scale-free random networks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 206-219 | Received 31 May 2021, Accepted 04 Jul 2022, Published online: 19 Aug 2022

References

  • Albert, R., Jeong, H., & Barabási, A. (1999). Diameter of the world-wide web. Nature, 401(6749), 130–131. https://doi.org/10.1038/43601
  • Albert, R., Jeong, H., & Barabási, A. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378.381. https://doi.org/10.1038/35019019
  • Aleta, A., Martin-Corral, D., Y Piontti, A. P., Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N. E., Halloran, M. E., Longini Jr, I. M., Jr, Merler, S., Pentland, A., Vespignani, A., Moro, E., & Moreno, Y. (2020). Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 4(9), 964–971. https://doi.org/10.1038/s41562-020-0931-9
  • Artico, I., Smolyarenko, I., Vinciotti, V., & Wit, E. C. (2020). How rare are power-law networks really? Proceedings of the Royal Society A, 476(2241), 20190742. https://doi.org/10.1098/rspa.2019.0742
  • Ball, F., Sirl, D., & Trapman, P. (2010). Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Mathematical Biosciences, 224(2), 53–73. https://doi.org/10.1016/j.mbs.2009.12.003
  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
  • Barabási, A. L. (2015). Network science. Cambridge University Press.
  • Bertotti, M. L., & Modanese, G. (2019). The configuration model for Barabasi-Albert networks. Applied Network Science, 4(1), 1–13. https://doi.org/10.1007/s41109-019-0152-1
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009
  • Boguná, M., Castellano, C., & Pastor-Satorras, R. (2013). Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Physical Review Letters, 111(6), 068701. https://doi.org/10.1103/PhysRevLett.111.068701
  • Boguñá, M., Pastor-Satorras, R., & Vespignani, A. (2004). Cut-offs and finite size effects in scale-free networks. European Physical Journal B, 38(2), 205–209. https://doi.org/10.1140/epjb/e2004-00038-8
  • Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-08746-5
  • Caldarelli, G., & Vespignani, A. (2007). Large scale structure and dynamics of complex networks: From information technology to finance and natural science. World Scientific Publishing Company.
  • Cator, E., & Van Mieghem, P. (2012). Second-order mean-field susceptible-infected-susceptible epidemic threshold. Physical Review E, 85(5), 056111. https://doi.org/10.1103/PhysRevE.85.056111
  • Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., & Faloutsos, C. (2008). Epidemic thresholds in real networks. ACM Transactions on Information and System Security (TISSEC), 10(4), 1–26. https://doi.org/10.1145/1284680.1284681
  • Chang, S. L., Piraveenan, M., & Prokopenko, M. (2020). Impact of network assortativity on epidemic and vaccination behaviour. Chaos, Solitons, and Fractals, 140, 110143. https://doi.org/10.1016/j.chaos.2020.110143
  • Cliff, O. M., Harding, N., Piraveenan, M., Erten, E. Y., Gambhir, M., & Prokopenko, M. (2018). Investigating spatiotemporal dynamics and synchrony of influenza epidemics in Australia: An agent-based modelling approach. Simulation Modelling Practice and Theory, 87, 412–431. https://doi.org/10.1016/j.simpat.2018.07.005
  • de Arruda, G. F., Rodrigues, F. A., & Moreno, Y. (2018). Fundamentals of spreading processes in single and multilayer complex networks. Physics Reports, 756, 1–59. https://doi.org/10.1016/j.physrep.2018.06.007
  • Draief, M., Ganesh, A., & Massoulié, L. (2006). Thresholds for virus spread on networks. Proceedings of the 1st international conference on performance evaluation methodolgies and tools (pp. 51–es).
  • Durrett, R. (2006). Random graph dynamics. Cambridge University Press.
  • Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., & Apkarian, A. V. (2005). Scale-free brain functional networks. Physical Review Letters, 94(1), 018102. https://doi.org/10.1103/PhysRevLett.94.018102
  • Erdös, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae Debrecen, 6, 290. https://doi.org/10.1515/9781400841356.38
  • Estrada, E. (2011). The structure of complex networks: Theory and applications. Oxford University Press.
  • Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bonsall, D., & Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science, 368(6491), 6491. https://doi.org/10.1126/science.abb6936
  • Firth, J. A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A. J., & Spurgin, L. G. (2020). Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 26(10), 1616–1622. https://doi.org/10.1038/s41591-020-1036-8
  • Flanders, D., & Kleinbaum, D. (1995). Basic models for disease occurrence in epidemiology. International Journal of Epidemiology, 24(1), 1–7. https://doi.org/10.1093/ije/24.1.1
  • Fox Keller, E. (2005). Revisiting “scale-free” networks. BioEssays, 27(10), 1060–1068. https://doi.org/10.1002/bies.20294
  • Ganesh, A., Massoulié, L., & Towsley, D. (2005). The effect of network topology on the spread of epidemics. Proceedings ieee 24th annual joint conference of the ieee computer and communications societies. (Vol.2, pp. 1455–1466).
  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25), 2340–2361. https://doi.org/10.1021/j100540a008
  • Harris, T. E. (1963). The theory of branching processes. Springer-Verlag.
  • Hindes, J., & Schwartz, I. B. (2016). Epidemic extinction and control in heterogeneous networks. Physical Review Letters, 117(2), 028302. https://doi.org/10.1103/PhysRevLett.117.028302
  • Hofstad, R. V. D. (2016). Random graphs and complex networks (Vol. 1). Cambridge University Press.
  • Holme, P. (2013). Extinction times of epidemic outbreaks in networks. PloS one, 8(12), e84429. https://doi.org/10.1371/journal.pone.0084429
  • Holme, P., & Tupikina, L. (2018). Epidemic extinction in networks: Insights from the 12 110 smallest graphs. New Journal of Physics, 20(11), 113042. https://doi.org/10.1088/1367-2630/aaf016
  • Holme, P. (2019). Rare and everywhere: Perspectives on scale-free networks. Nature Communications, 10(1), 1–3. https://doi.org/10.1038/s41467-019-09038-8
  • Iannelli, M., & Pugliese, A. (2014). An introduction to mathematical population dynamics. Springer.
  • Karrer, B., & Newman, M. E. J. (2010). Message passing approach for general epidemic models. Physical Review E, 82(1), 016101. https://doi.org/10.1103/PhysRevE.82.016101
  • Keeling, M. J., & Grenfell, B. T. (2000). Individual-based perspectives on R0. Journal of Theoretical Biology, 203(1), 51–61. https://doi.org/10.1006/jtbi.1999.1064
  • Keeling, M. (2005). The implications of network structure for epidemic dynamics. Theoretical Population Biology, 67(1), 1–8. https://doi.org/10.1016/j.tpb.2004.08.002
  • Keeling, M., & Eames, K. (2005). Networks and epidemic models. Journal of the Royal Society, Interface/the Royal Society, 10 2(4), 295–307. https://doi.org/10.1098/rsif.2005.0051
  • Keeling, M. J., & Rohani, P. (2011). Modeling infectious diseases in humans and animals. Princeton university press.
  • Kiss, I., Miller, J., & Simon, P. (2017). Mathematics of epidemics on networks: From exact to approximate models. Springer.
  • Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893. https://doi.org/10.1038/nphys1746
  • López-García, M. (2016). Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Mathematical Biosciences, 271, 42–61. https://doi.org/10.1016/j.mbs.2015.10.010
  • Miller, J. C. (2008). Bounding the size and probability of epidemics on networks. Journal of Applied Probability, 45(2), 498–512. https://doi.org/10.1239/jap/1214950363
  • Miller, J. C. (2012). A note on the derivation of epidemic final sizes. Bulletin of Mathematical Biology, 74(9), 2125–2141. https://doi.org/10.1007/s11538-012-9749-6
  • Min, B. (2018). Identifying an influential spreader from a single seed in complex networks via a message-passing approach. The European Physical Journal. B, 91(1), 1–6. https://doi.org/10.1140/epjb/e2017-80597-1
  • Mode, C. J. (1971). Multitype branching processes. Theory and applications. American Elsevier Pub. Co.
  • Newman, M. E. J., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 036122. https://doi.org/10.1103/PhysRevE.68.036122
  • Newman, M. (2010). Networks: An introduction. Oxford University Press.
  • Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015, August). Epidemic processes in complex networks. Review Mod. Phys, 87(3), 925–979. https://doi.org/10.1103/RevModPhys.87.925
  • Piraveenan, M., Prokopenko, M., & Hossain, L. (2013). Percolation centrality: Quantifying graph-theoretic impact of nodes during percolation in networks. PloS one, 8(1), e53095. https://doi.org/10.1371/journal.pone.0053095
  • Radicchi, F., & Castellano, C. (2016). Leveraging percolation theory to single out influential spreaders in networks. Physical Review E, 93(6), 062314. https://doi.org/10.1103/PhysRevE.93.062314
  • Rocha, L. E. C., Liljeros, F., & Holme, P. (2011). Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Computational Biology, 7(3), e1001109. https://doi.org/10.1371/journal.pcbi.1001109
  • Rogers, T. (2015). Assessing node risk and vulnerability in epidemics on networks. EPL (Europhysics Letters), 109(2), 28005. https://doi.org/10.1209/0295-5075/109/28005
  • Strona, G., Carstens, C. J., Beck, P. S. A., & Han, B. A. (2018). The intrinsic vulnerability of networks to epidemics. Ecological Modelling, 383, 91–97. https://doi.org/10.1016/j.ecolmodel.2018.05.013
  • Sun, K., Wang, W., Gao, L., Wang, Y., Luo, K., Ren, L., Zhan, Z., Chen, X., Zhao, S., Huang, Y., Sun, Q., Liu, Z., Litvinova, M., Vespignani, A., Ajelli, M., Vibound, C., & Yu, H. (2021). Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 371(6526), 6526. https://doi.org/10.1126/science.abe2424
  • Thedchanamoorthy, G., Piraveenan, M., Uddin, S., & Senanayake, U. (2014). Influence of vaccination strategies and topology on the herd immunity of complex networks. Social Network Analysis and Mining, 4(1), 213. https://doi.org/10.1007/s13278-014-0213-5
  • Thompson, R. N., Gilligan, C. A., & Cunniffe, N. J. (2020). Will an outbreak exceed available resources for control? Estimating the risk from invading pathogens using practical definitions of a severe epidemic. Journal of the Royal Society, Interface, 17(17), 20200690. https://doi.org/10.1098/rsif.2020.0690
  • Van Mieghem, P., Omic, J., & Kooij, R. (2008). Virus spread in networks. IEEE/ACM Transactions On Networking, 17(1), 1–14. https://doi.org/10.1109/TNET.2008.925623
  • Windridge, P. (2018). The extinction time of a subcritical branching process related to the SIR epidemic on a random graph. Journal of Applied Probability, 52(4), 1195–201. https://doi.org/10.1239/jap/1450802763
  • Zachreson, C., Fair, K. M., Cliff, O. M., Harding, N., Piraveenan, M., & Prokopenko, M. (2018). Urbanization affects peak timing, prevalence, and bimodality of influenza pandemics in Australia: Results of a census-calibrated model. Science Advances, 4(12), eaau5294. https://doi.org/10.1126/sciadv.aau5294
  • Zhang, H., Guan, Z.-H., Li, T., Zhang, X.-H., & Zhang, D.-X. (2013). A stochastic SIR epidemic on scale-free network with community structure. Physica A: Statistical Mechanics and Its Applications, 392(4), 974–981. https://doi.org/10.1016/j.physa.2012.10.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.