1,443
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dynamics of freight transport decarbonisation: a conceptual model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 239-257 | Received 16 Sep 2021, Accepted 01 Nov 2022, Published online: 18 Nov 2022

References

  • Abbas, K. A., & Bell, M. G. H. (1994). System dynamics applicability to transportation modelling. Transportation Research Part A, 28(5), 373–390. https://doi.org/10.1016/0965-8564(94)90022-1
  • Adam, A., Josephson, P.-E. B., & Lindahl, G. (2017). Aggregation of factors causing cost overruns and time delays in large public construction projects: Trends and implications. Engineering, Construction and Architectural Management, 24(3), 393–406. https://doi.org/10.1108/ECAM-09-2015-0135
  • Agha, M. R. N. J., Bazrafshan, M., & Mahmoudabadi, A. (2019). Investigating the effects of fuel price on inter-city transportation utilizing system dynamics approach and simulation (Case Study: Inter-City Transport, Iran). Journal of Urban Design, 2(1), 1–13. https://doi.org/10.31058/j.ud.2019.21001
  • Alliance for Logistics Innovation through Collaboration in Europe. (2020). Roadmap for the Physical Internet. ETP ALICE.
  • Arellana, J., Márquez, L., & Cantillo, V. (2020). COVID-19 outbreak in Colombia: An analysis of its impacts on transport systems. Journal of Advanced Transportation, 8867316. https://doi.org/10.1155/2020/8867316
  • Arencibia, A. I., Feo-Valero, M., García-Menéndez, L., & Román, C. (2015). Modelling mode choice for freight transport using advanced choice experiments. Transportation Research Part A: Policy and Practice, 75(1), 252–267. https://doi.org/10.1016/j.tra.2015.03.027
  • Aschauer, G. (2013). The development of sustainable transports through the right logistics strategy – A system dynamics approach. Proceedings of the International Conference of the System Dynamics Society, 31(1), 21–25. https://proceedings.systemdynamics.org/2013/proceed/papers/P1157.pdf
  • Aschauer, G., Gronalt, M., & Mandl, C. (2015). Modelling interrelationships between logistics and transportation operations – A system dynamics approach. Management Research Review, 38(5), 505–539. https://doi.org/10.1108/MRR-11-2013-0271
  • Azlan, S., Rahman, M. M., Faizal, H. M., Saat, A., & Wahid, M. A. (2019). Greenhouse gas (GHG) Emissions from land transports in Malaysia: Modelling and policy analysis. Proceedings of the 2019 International Conference on Industrial Engineering and Operations Management. Bangkok, Thailand, IEOM Society International. http://ieomsociety.org/pilsen2019/papers/456.pdf
  • Barisa, A., & Rosa, M. (2018a). A system dynamics model for CO2 emission mitigation policy design in road transport sector. Energy Procedia, 147(1), 419–427. https://doi.org/10.1016/j.egypro.2018.07.112
  • Barisa, A., & Rosa, M. (2018b). Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia, 147(1), 86–95. https://doi.org/10.1016/j.egypro.2018.07.036
  • Becdach, C., Brown, B., Halbardier, F., Henstorf, B., & Murphy, R. (2020). Rapidly forecasting demand and adapting commercial plans in a pandemic. McKinsey & Company. https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/rapidly-forecasting-demand-and-adapting-commercial-plans-in-a-pandemic#
  • Boer, E., Aarnink, S., Kleiner, F., & Pagenkopf, J. (2013). Zero emissions trucks: An overview of state-of-the-art technologies and their potential. Delft University.
  • Brito Junior, I., Hino, C. M., Gonçalves, P., Andrade, L. E. W. A., Moreira, C., Costa, G., Nardin, L. G., Yoshizaki, H. T. Y., & Magalhães, D. J. (2011). Reducing CO2 emissions due to a shift from road to cabotage transport of cargo in Brazil. Proceedings of the 2011 International Conference of the System Dynamics Society. Washington, DC, System Dynamics Society.
  • Bynum, C., Sze, C., Kearns, D., Polovick, B., & Simon, K. (2018). An examination of a voluntary policy model to effect behavioral change and influence interactions and decision making in the freight sector. Transportation Research Part D: Transport and Environment, 61(1), 19–32. https://doi.org/10.1016/j.trd.2016.11.018
  • Cagliano, A. C., Carlin, A., Mangano, G., & Rafele, C. (2017). Analyzing the diffusion of eco-friendly vans for urban freight distribution. The International Journal of Logistics Management, 28(4), 1218–1242. https://doi.org/10.1108/IJLM-05-2016-0123
  • Cagliano, A. C., Carlin, A., Mangano, G., & Zenezini, G. (2015a). System dynamics modelling for electric and hybrid commercial vehicles adoption. Proceedings of the 6th International Conference on Theoretical and Applied Mechanics, Salerno, Italy, WSEAS Press.
  • Cagliano, A. C., Mangano, G., Rafele, C., & Zenezini, G. (2015b). Assessing the diffusion of a city logistics system based on low emission vehicles. Proceedings of the Hamburg International Conference of Logistics, Hamburg, Germany, EconStor.
  • Capros, P., Vita, A., Tasios, N., Siskos, P., Kannavou, M., Petropoulos, A., & Nakos, C. (2016). EU reference scenario 2016: Energy, transport and GHG emissions trends to 2050. European Commission.
  • Choi, B., Park, S., & Lee, K.-D. (2019). A system dynamics model of the modal shift from road to rail: Containerization and imposition of taxes. Journal of Advanced Transportation, 7232710, 1–8. https://doi.org/10.1155/2019/7232710
  • Community of European Railway and Infrastructure Companies & European Rail Freight Association. (2019). Getting the price signals right: Why national governments should speed up the adoption of new road charging rules. http://www.cer.be/publications/latest-publications/getting-price-signals-right-why-national-governments-should-speed
  • Demirbas, A. (2011). Competitive liquid biofuels from biomass. Applied Energy, 88(1), 17–28. https://doi.org/10.1016/j.apenergy.2010.07.016
  • Demir, E., Bektaş, T., & Laporte, G. (2011). A comparative analysis of several vehicle emission models for road freight transportation. Transportation Research Part D: Transport and Environment, 16(5), 347–357. https://doi.org/10.1016/j.trd.2011.01.011
  • Doll, C., Pastori, E., & Fiorello, D. (2010). The impact of road charges on efficiency, modal split and climate balance of longer and heavier trucks. 12th World Conference on Transport Research, Lisbon, Portugal, WCTR.
  • Dong, J., Xu, Y., Hwang, B., Ren, R., & Chen, Z. (2019). The impact of underground logistics system on urban sustainable development: A system dynamics approach. Sustainability, 11(1223), 1–21. https://doi.org/10.3390/su11051223
  • Erdmann, L., Hilty, L., Goodman, J., & Arnfalk, P. (2004). The future impact of ICTS on environmental sustainability. Technical Report EUR 21384 EN, Institute for Prospective Technological Studies.
  • European Automobile Manufacturers Association. (2021). Vehicles in Use Europe. ACEA Report. https://www.acea.be/uploads/publications/report-vehicles-in-use-europe-january-2021.pdf
  • European Climate Foundation. (2018). What delivering the Paris Agreement means for Europe. https://europeanclimate.org/resources/what-delivering-the-paris-agreement-means-for-europe/
  • European Commission. (2016). The implementation of the 2011 White Paper on transport “roadmap to a single European transport area – Towards a competitive and resource-efficient transport system” five years after its publication: Achievements and challenges. White Paper, Communication. Brussels.
  • European Commission. (2021). EU transport in figures. In Statistical pocketbook 2021. Publications Office of the European Union, (pp. 164). https://data.europa.eu/doi/10.2832/27610
  • Ferrari, P. (2014). The dynamics of modal split for freight transport. Transportation Research Part E, 70, 163–176. https://doi.org/10.1016/j.tre.2014.07.003
  • Ferrari, P. (2016). Instability and dynamic cost elasticities in freight transport systems. Transport Policy, 49, 226–233. https://doi.org/10.1016/j.tranpol.2016.05.008
  • Fiorello, D., Fermi, F., & Bielanska, D. (2010). The ASTRA model for strategic assessment of transport policies. System Dynamics Review, 26(1), 283–290. https://doi.org/10.1002/sdr.452
  • Folkson, R. (2014). Alternative fuels and advanced vehicle technologies for improved environmental performance: Towards zero carbon transportation. Woodhead Publishing.
  • Forrester, J. W. (1961). Industrial dynamics. Pegasus Communications.
  • Freeman, R., Yearworth, M., & Preist, C. (2015). Revisiting Jevons’ paradox with system dynamics: systemic causes and potential cures. Journal of Industrial Ecology, 20(2), 341–353. https://doi.org/10.1111/jiec.12285
  • Frenken, K., & Schor, J. (2017). Putting the sharing economy into perspective. Environmental Innovation and Societal Transitions, 23, 3–10. https://doi.org/10.1016/j.eist.2017.01.003
  • Fridell, E., Bäckström, S., & Stripple, H. (2019). Considering infrastructure when calculating emissions for freight transportation. Transportation Research Part D, 69(1), 346–363. https://doi.org/10.1016/j.trd.2019.02.013
  • Froio, P., & Bezerra, B. (2021). Environmental sustainability initiatives adopted by logistics service providers in a developing country – An overview in the Brazilian context. Journal of Cleaner Production, 304(1), 126989. https://doi.org/10.1016/j.jclepro.2021.126989
  • Geng, X., Wen, Y., Zhou, C., & Xiao, C. (2017). Establishment of the sustainable ecosystem for the regional shipping industry based on system dynamics. Sustainability, 9(1), 742. https://doi.org/10.3390/su9050742
  • Ghisolfi V., Tavasszy L. A., Correia G. H. A., Chaves G. L. D. and Ribeiro G. M. (2022). Freight Transport Decarbonization: A Systematic Literature Review of System Dynamics Models. Sustainability, 14(6), 3625 https://doi.org/10.3390/su14063625
  • Greene, S., & Façanha, C. (2019). Carbon offsets for freight transport decarbonisation. Nature Sustainability, 2, 994–996. https://doi.org/10.1038/s41893-019-0413-0
  • Guérin, E., Mas, C., & Waisman, H. (2014). Pathways to deep decarbonisation. Sustainable Development Solutions Network and Institute for Sustainable Development and International Relations.
  • Haddad, M., Mansour, C., & Diab, J. (2019). System dynamics modeling for mitigating energy use and CO2 emissions of freight transport in Lebanon. Proceedings of the International Conference on Industrial Engineering and Operations Management, Bangkok, Thailand, Lebanese American University.
  • Halldórsson, A., & Wehner, J. (2020). Last-mile logistics fulfilment: A framework for energy efficiency. Research in Transportation Business & Management, 37, 100481. https://doi.org/10.1016/j.rtbm.2020.100481
  • Hamoudi, K., Bellaouar, A., & Petiot, R. (2021). A model of systems dynamics for physical flow analysis in a distribution supply chain. Transport and Telecommunication, 22(1), 98–108. https://doi.org/10.2478/ttj-2021-0008
  • Han, J., & Hayashi, Y. (2008). CO2 mitigation scenarios in China’s intercity freight transport. Civil Engineering Planning Research Presentation, 37(1), 1–4. https://www.urban.env.nagoya-u.ac.jp/strategy/paper/2008/jiyu/08j_han1.pdf
  • Hidayatno, A., Destyanto, A. R., & Fadhil, M. (2019). Model conceptualization on E-commerce growth impact to emissions generated from urban logistics transportation: A case study of Jakarta. Energy Procedia, 156(1), 144–148. https://doi.org/10.1016/j.egypro.2018.11.119
  • Hilty, L. M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., & Wäger, P. A. (2006). The relevance of information and communication technologies for environmental sustainability - a prospective simulation study. Environmental Modelling and Software, 21(1), 1618–1629. https://doi.org/10.1016/j.envsoft.2006.05.007
  • Holguín-Veras, J., Kalahasthi, L., Campbell, S., González-Calderón, C. A., & Wang, X. (2021). Freight mode choice: Results from a nationwide qualitative and quantitative research effort. Transportation Research Part A – Policy and Practice, 143, 78–120. https://doi.org/10.1016/j.tra.2020.11.016
  • Huang, D., Han, M., & Jiang, Y. (2021). Research on Freight transportation carbon emission reduction based on system dynamics. Applied Science, 11(2041), 1–15. https://doi.org/10.3390/app11052041
  • Hu, W., Dong, J., Hwang, B., Ren, R., Chen, Y., & Chen, Z. (2020). Using system dynamics to analyze the development of urban freight transportation system based on rail transit: A case study of Beijing. Sustainable Cities and Society, 53(101923), 1–13. https://doi.org/10.1016/j.scs.2019.101923
  • Huo, H., & Wang, M. (2012). Modeling future vehicle sales and stock in China. Energy Policy, 43(1), 17–29. https://doi.org/10.1016/j.enpol.2011.09.063
  • International Energy Agency. (2020). World Energy Outlook 2020, IEA. https://www.iea.org/reports/world-energy-outlook-2020.
  • International Energy Agency. (2021). Tracking Transport 2021, IEA. https://www.iea.org/reports/tracking-transport-2021
  • International Renewable Energy Agency. (2020). Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5°C climate goal. IRENA, Abu Dhabi. https://irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction
  • Jong, G. C., Schroten, A., van Essen, H., Otten, M., & Bucci, P. (2010). The price sensitivity of road freight transport: A review of elasticities. In E. van de Voorde & T. Vanelslander (Eds.), Applied transport economics, a management and policy perspective. Antwerp: De Boeck. pp. 205–228.
  • Juan, A. A., Mendez, C. A., Faulin, J., Armas, J., & Grasman, S. E. (2016). Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges. Energies, 9(2), 1–21. https://doi.org/10.3390/en9020086
  • Kaledinova, E., Langerak, T., Reinder, P., Van Der Sterre, P., & Weijers, S. J. C. (2015). Learning from experiences in sustainable transport practice: Green freight Europe and the implementation of a best cases database. Logform - Scientific Journal of Logistics, 77(7), 78–86. https://doi.org/10.17270/J.LOG.2015.1.7
  • Kar, A., & Datta, P. R. (2020). Logistics cost dynamics in international business: A causal approach. Foreign Trade Review, 55(4), 478–495. https://doi.org/10.1177/0015732520947861
  • Kefalas, A. G. (2011). On systems thinking and the systems approach. The Journal of New Paradigm Research, 67(4–5), 343–371. https://doi.org/10.1080/02604027.2011.585911
  • Kim, N., Montreuil, B., Klibi, W., & Kholgade, N. (2021). Hyperconnected urban fulfillment and delivery. Transportation Research Part E: Logistics and Transportation Review, 145 1 , 102104. https://doi.org/10.1016/j.tre.2020.102104
  • Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: The concept and its limitations. Ecological Economics, 143(1), 37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041
  • Krail, M., & Kühn, A. (2012). The potential of alternative fuel technologies and of efficiency technologies for heavy goods vehicles. International Symposium on Heavy Vehicle Transport & Technology, Stockholm, Sweden, HVTT12.
  • Kumar, A. (2021). Transition management theory-based policy framework for analyzing environmentally responsible freight transport practices. Journal of Cleaner Production, 294(1), 126–209. https://doi.org/10.1016/j.jclepro.2021.126209
  • Kunze, O., Wulfhorst, G., & Minner, S. (2016). Applying systems thinking to city logistics: A qualitative (and quantitative) approach to model interdependencies of decisions by various stakeholders and their impact on city logistics. Transportation Research Procedia, 12(1), 692–706. https://doi.org/10.1016/j.trpro.2016.02.022
  • Laszlo, K. C. (2012). From systems thinking to systems being: The embodiment of evolutionary leadership. Journal of Organisational Transformation & Social Change, 9(2), 95–108. https://doi.org/10.1386/jots.9.2.95_1
  • Lewis, Y., Cohen, B., Van der Merwe, A. B., Mason-Jones, K., & Rambaran, N. (2014). Understanding emission reductions in the freight transport sector through system dynamics. Proceedings of the 33rd Southern African Transport Conference, Pretoria, South Africa. Minister of Transport.
  • Lewis, Y., Van der Merwe, A. B., Cohen, B., & Naude, L. (2015). Understanding the barriers to a shift of processed food from road to rail through system dynamics. Proceedings of the 34th Southern African Transport Conference, Pretoria, South Africa. Minister of Transport.
  • Liao, F., Molin, E., & van Wee, B. (2017). Consumer preferences for electric vehicles: A literature review. Transport Review, 37(3), 252–275. https://doi.org/10.1080/01441647.2016.1230794
  • Liu, P., Liu, C., Du, J., & Mu, D. (2019a). A system dynamics model for emissions projection of hinterland transportation. Journal of Cleaner Production, 218(1), 591–600. https://doi.org/10.1016/j.jclepro.2019.01.191
  • Liu, X., McKinnon, A., & Wei, N. (2019b). An analysis of energy-related CO2 emissions from China’s logistics industry. In Liu, X.(Ed.) Environmental sustainability in Asian logistics and supply chains (pp. 3–19). Springer: Singapore. https://doi.org/10.1007/978-981-13-0451-4_1
  • Liu, P., & Mu, D. (2015). Evaluating sustainability of truck weight regulations: A system dynamics view. Journal of Industrial Engineering and Management, 8(1), 1711–1730. http://hdl.handle.net/10419/188757
  • Liu, P., Mu, D., & Gong, D. (2017). Eliminating overload trucking via a modal shift to achieve intercity freight sustainability: A system dynamics approach. Sustainability, 9(3), 1–24. https://doi.org/10.3390/su9030398
  • Liu, P., Wang, C., Xie, J., Mu, D., & Lim, M. K. (2021). Towards green port-hinterland transportation: Coordinating railway and road infrastructure in Shandong Province, China. Transportation Research Part D, 94(102806), 1–18. https://doi.org/10.1016/j.trd.2021.102806
  • Loske, D. (2020). The impact of COVID-19 on transport volume and freight capacity dynamics: An empirical analysis in German food retail logistics. Transportation Research Interdisciplinary Perspectives, 6, 100165. https://doi.org/10.1016/j.trip.2020.100165
  • Maalla, E., & Kunsch, P. (2008). Simulation of micro-CHP diffusion by means of system dynamics. Energy Policy, 36(7), 2308–2319. https://doi.org/10.1016/j.enpol.2008.01.026
  • Mansson, A. (2016). Energy security in a decarbonised transport sector: A scenario based analysis of Sweden’s transport strategies. Energy Strategy Reviews, 13-14(1), 236–247. https://doi.org/10.1016/j.esr.2016.06.004
  • McKinnon, A. C. (2018). Decarbonising logistics: Distributing goods in a low-carbon world. Kogan Page.
  • McKinnon, A. C. (2020). Decarbonising long haul road freight: Looking beyond the European debate on powertrain technologies. In 7th International Workshop on Sustainable Road Freight. Webinar. 28-30 October, 2020.
  • McKinnon, A. C., & Ge, Y. (2006). The potential for reducing empty running by trucks: A retrospective analysis. International Journal of Physical Distribution & Logistics Management, 36(5), 391–410. https://doi.org/10.1108/09600030610676268/full/html
  • Meadows, D. H. (1982). Whole earth models and systems. CoEvolution Quarterly, 98–108. https://donellameadows.org/wp-content/userfiles/Whole-Earth-Models-and-Systems.pdf
  • Meadows, D. H. (1991). Global citizen. Island Press.
  • Mease, L. A., Erickson, A., & Hicks, C. (2018). Engagement takes a (fishing) village to manage a resource: Principles and practice of effective stakeholder engagement. Journal of Environmental Management, 212, 248–257. https://doi.org/10.1016/j.jenvman.2018.02.015
  • Melkonyan, A., Gruchmann, T., Lohmar, F., Kamath, V., & Spinler, S. (2020). Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks. International Journal of Production Economics, 228(107746), 1–17. https://doi.org/10.1016/j.ijpe.2020.107746
  • Menezes, E., Maia, A. G., & de Carvalho, C. S. (2017). Effectiveness of low-carbon development strategies: Evaluation of policy scenarios for the urban transport sector in a Brazilian megacity. Technological Forecasting and Social Change, 114(1), 226–241. https://doi.org/10.1016/j.techfore.2016.08.016
  • Miller, J., & Jin, L. (2018). Global progress towards soot-free diesel vehicles in 2018. ICCT – The International Council on Clean Transportation.
  • Montreuil, B. (2011). Toward a physical internet: Meeting the global logistics sustainability grand challenge. Logistics Research, 3, 71–87. https://doi.org/10.1007/s12159-011-0045-x
  • Oumer, A. J., Cheng, J. K., & Tahar, R. M. (2015). Evaluating the environmental impact of inbound logistics in automotive assembly line: A system dynamics approach. Proceedings of the 5th IEEE International Conference on System Engineering and Technology, 1–5.
  • Pereirinha, P. G., González, M., Carrilero, I., Anseán, D., Alonso, J., & Viera, J. C. (2018). Main trends and challenges in road transportation electrification. Transportation Research Procedia, 33(1), 235–242. https://doi.org/10.1016/j.trpro.2018.10.096
  • Plötz, P., Gnann, T., Jochem, P., Yilmaz, H. U., & Kaschub, T. (2019). Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions. Energy Policy, 130(1), 32–40. https://doi.org/10.1016/j.enpol.2019.03.042
  • Purwanto, J., González, I. H., Fermi, F., & Fiorello, D. (2011). Global scale system dynamic simulation model for transport emissions (GLADYSTE). Transporti e Territorio-TRT. http://www.trttrasportieterritorio.it/documenti/GLADYSTE.pdf
  • Rezaei, J., Pourmohammadzia, N., Dimitropoulos, C., Tavasszy, L., & Duinkerken, M. (2020). Co-procurement: Making the most of collaborative procurement. International Journal of Production Research, 58(15), 4529–4540. https://doi.org/10.1080/00207543.2020.1770355
  • Rigot-Müller, P. (2018). Analysing the heavy goods vehicle “écotaxe” in France: Why did a promising idea fail in implementation? Transportation Research Part A: Policy and Practice, 118(1), 147–173. https://doi.org/10.1016/j.tra.2018.08.024
  • Roxas, F. M. Y., Rivera, J. P. R., & Gutierrez, E. L. M. (2019). Locating potential leverage points in a systems thinking causal loop diagram toward policy intervention. World Futures, 75(8), 609–631. https://doi.org/10.1080/02604027.2019.1654784
  • Rozentale, L., Mo, G. B., Gravelsins, A., Rochas, C., Pubule, J., & Blumberga, D. (2020). System dynamics modelling of railway electrification in Latvia. Environmental and Climate Technologies, 24(2), 247–257. https://doi.org/10.2478/rtuect-2020-0070
  • Schade, B., & Schade, W. (2005). Evaluating economic feasibility and technical progress of environmentally sustainable transport scenarios by a backcasting approach with ESCOT. Transport Reviews, 25(1), 647–668. https://doi.org/10.1080/01441640500361033
  • Seitz, C. (2014). Conceptual Causal Framework for the Diffusion of Emerging CO2-saving Technologies in Heavy Commercial Vehicles. Karlsruhe Institute of Technology – KIT.
  • Seitz, C., & Terzidis, O. (2014). Market penetration of alternative powertrain concepts in heavy commercial vehicles: A system dynamics approach. Proceedings of the International Conference of the System Dynamics Society, 32(1), 1–17. https://proceedings.systemdynamics.org/2014/proceed/papers/P1130.pdf
  • Senge, P. (1990). The fifth discipline – The art and practice of the learning organization. Doubleday.
  • Setiawan, I. C., Indarto, & Deendarlianto (2019). System dynamics modeling of Indonesia road transportation energy demand and scenario analysis to achieve national energy policy target. Annual Basic Science International Conference 2019 (BaSIC 2019), Malang, Indonesia. IOP Conference Series.
  • Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., & Asgeirsson, E. I. (2014). Potential impact of transition to a low-carbon transport system in Iceland. Energy Policy, 69(1), 127–142. https://doi.org/10.1080/21680566.2014.916236
  • Shepherd, S. P. (2014). A review of system dynamics models applied in transportation. Transportmetrica B: Transport Dynamics, 2(2), 83–105. https://doi.org/10.1080/21680566.2014.916236
  • Sim, J. (2017). The influence of new carbon emission abatement goals on the truck-freight transportation sector in South Korea. Journal of Cleaner Production, 164(1), 153–162. https://doi.org/10.1016/j.jclepro.2017.06.207
  • Stattman, S. L., Hospes, O., & Mol, A. P. J. (2013). Governing biofuels in Brazil: A comparison of ethanol and biodiesel policies. Energy Policy, 61(1), 22–30. https://doi.org/10.1016/j.enpol.2013.06.005
  • Stelling, P. (2014). Policy instruments for reducing CO2-emissions from the Swedish freight transport sector. Research in Transportation Business & Management, 12(1), 47–54. https://doi.org/10.1016/j.rtbm.2014.08.004
  • Sterman, J. (2000). Business dynamics: System thinking and modelling for a complex world. McGraw-Hill.
  • Teixeira, A. C. R., Machado, P. G., Borges, R. R., & Mouette, D. (2020). Public policies to implement alternative fuels in the road transport sector. Transport Policy, 99(1), 345–361. https://doi.org/10.1016/j.tranpol.2020.08.023
  • Thaller, C., Clausen, U., & Kampmann, R. (2016a). System dynamics based, microscopic freight transport simulation for urban areas in commercial transport. In U. Clausen, H. Friedrich, C. Thaller, & C. Geiger (Eds.), Commercial Transport (pp. 55–72). Springer International Publishing.
  • Thaller, C., Niemann, F., Dahmen, B., Clausen, U., & Leerkamp, B. (2016b). A system dynamics approach for assessing the development of the CEP market in Urban Areas. In: Proceedings of the 34th International Conference of the System Dynamics Society, Delft, Netherlands. System Dynamics Society. (pp. 1–24).
  • Thaller, C., Niemann, F., Dahmen, B., Clausen, U., & Leerkamp, B. (2017). Describing and explaining urban freight transport by system dynamics. Transportation Research Procedia, 25(1), 1075–1094. https://doi.org/10.1016/j.trpro.2017.05.480
  • Touratier-Muller, N., & Ortas, E. (2021). Factors driving shippers’ compliance with a voluntary sustainable freight programme in France. Journal of Cleaner Production, 318(1), 128397. https://doi.org/10.1016/j.jclepro.2021.128397
  • United Nations. (2015). Paris agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
  • United Nations Framework Convention on Climate Change. (2017). Enhancing financing for the research, development and demonstration of climate technologies. Technology Executive Committee, Working Paper.
  • United States Department of Transportation. (2022). Transportation services contributed 5.4% to U.S. GDP in 2020; a decline from 5.9% in 2019. Bureau of Transportation Statistics. https://www.bts.gov/newsroom/transportation-services-contributed-54-us-gdp-2020-decline-59-2019
  • Von Bertalanffy, L. (1972). The history and status of general systems theory. Academy of Management Journal, 15(4), 407–426.https://doi.org/10.5465/255139
  • Wang, L., Zhao, Z., Wang, X., & Xue, X. (2021). Transportation de-carbonization pathways and effect in China: A systematic analysis using STIRPAT-SD model. Journal of Cleaner Production, 288(125574), 1–15. https://doi.org/10.1016/j.jclepro.2020.125574
  • Webster, F. E., & Wind, Y. (1972). Organizational buying behavior. Prentice-Hall.
  • Yearworth, M. (2014). A brief introduction to system dynamics modelling. University of Bristol. https://www.grounded.systems/wp-content/uploads/2015/02/SD-Introduction-MY-241014.pdf
  • Yearworth, M. (2020). A brief introduction to system dynamics modelling (4th) ed.). University of Exeter. https://www.grounded.systems/wp-content/uploads/2020/05/SD-Introduction-MY-20200527.pdf
  • York, T. A., Brent, A. C., Musango, J. K., & Kock, I. H. (2017). Infrastructure implications of a green economy transition in the Western Cape Province of South Africa: A system dynamics modelling approach. Development Southern Africa, 34(5), 529–547. https://doi.org/10.1080/0376835X.2017.1358601
  • Zenezini, G., & Marco, A. (2020). City logistics policy evaluation with system dynamics. Transportation Research Procedia, 46(1), 253–260. https://doi.org/10.1016/j.trpro.2020.03.188
  • Zhang, L., Liu, L., Wang, M., Wang, Y., & Zhou, Y. (2019). Forecast and analysis of road transportation energy demand under the background of system dynamics. IOP Conf. Series: Earth and Environmental Science, 252, 4th International Conference on Environmental Science and Material Application, Xi’an, China. IOP Conference Series.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.