191
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A closest point projection method for stress integration of 3D sand models generalised by transformed stress method

& ORCID Icon
Pages 27-39 | Received 28 Jun 2022, Accepted 28 Nov 2022, Published online: 12 Dec 2022

References

  • Anandarajah, A., 2010. Computational methods in elasticity and plasticity. Solids and porous media. New York: Springer-Verlag.
  • Argyris, J.H., et al., 1974. Recent developments in finite element analyses of prestressed concrete reactor vessels. Nuclear Engineering and Design, 28 (1), 42–75. 10.1016/0029-54937490088-0.
  • Armero, F. and Perez-Foguet, A., 2002. On the formulation of closest-point projection algorithms in elastoplasticity part I: the variational structure. International Journal for Numerical Methods in Engineering, 53 (1), 297–329. doi:10.1002/nme.278.
  • Bicanic, N. and Pearce, C.J., 1996. Computational aspects of a softening plasticity model for plain concrete. Mechanics of Cohesive-Frictional Materials, 1, 75–94. doi:10.1002/SICI1099-14841996011:1<75:AID-CFM4>3.0.CO;2-I
  • Borja, R.I. and Lee, S.R., 1990. Cam-Clay plasticity, part I: implicit integration of elastoplastic constitutive relations. Computer Methods in Applied Mechanics and Engineering, 78 (1), 49–72. doi:10.1016/0045-78259090152-C.
  • Borja, R.I., 1991. Cam-Clay plasticity, Part II: implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Computer Methods in Applied Mechanics and Engineering, 88 (2), 225–240. doi:10.1016/0045-78259190256-6.
  • Caddemi, S. and Martin, J.B., 1991. Convergence of the Newton–Raphson algorithm in elastic–plastic incremental analysis. International Journal for Numerical Methods in Engineering, 311 (1), 177–191. doi:10.1002/nme.1620310110.
  • Chen, Z., Huang, M., and Shi, Z., 2020. Application of a state-dependent sand model in simulating the cone penetration tests. Computers and Geotechnics, 127, 103780. doi:10.1016/j.compgeo.2020.103780
  • Gajo, A. and Wood, D.M., 1999. Severn-Trent sand: a kinematic hardening constitutive model for sands: the q-p formulation. Geotechnique, 49 (5), 595–614. doi:10.1680/geot.1999.49.5.595.
  • Hu, C. and Liu, H.X., 2014. Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay. Computers and Geotechnics, 55, 27–41. doi:10.1016/j.compgeo.2013.07.012
  • Huang, J. and Griffiths, D.V., 2009. Return mapping algorithms and stress predictors for failure analysis in geomechanics. Journal of Engineering Mechanics, 135 (4), 276–284. doi:10.1061/ASCE0733-93992009135:4276.
  • Huang, M., Li, X., and Jia, C., 2010. A double yield surface constitutive model for sand based on state-dependent critical state theory. Chinese Journal of Geotechnical Engineering, 32 (11), 1764–1771. [in Chinese].
  • Ishihara, K., 1996. Liquefaction and flow failure during earthquakes. Geotechnique, 43 (3), 351–415. doi:10.1680/geot.1993.43.3.351.
  • Lade, P.V. and Duncan, J.M., 1975. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division, 101 (10), 1037–1053. doi:10.1061/AJGEB6.0000204.
  • Li, X.S. and Dafalias, Y.F., 2000. Dilatancy for cohesionless soils. Geotechnique, 50 (4), 449–460. doi:10.1680/geot.2000.50.4.449.
  • Jefferies, M.G., 1993. Nor-Sand: a simple critical state model for sand. Geotechnique, 43 (1), 91–103. doi:10.1680/geot.1993.43.1.91.
  • Manzari, M.T. and Nour, M.A., 1997. On implicit integration of bounding surface plasticity models. Computers & structures, 63 (3), 385–395. doi:10.1016/S0045-79499600373-2.
  • Manzari, M.T. and Prachathananukit, R., 2001. On integration of cyclic soil plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 25 (6), 525–549. doi:10.1002/nag.140.
  • Matsuoka, H. and Nakai, T., 1974. Stress-deformation and strength characteristics of soil under three difference principal stresses. Proceedings of the Japan Society of Civil Engineers, 232, 59–70. https://www.jstage.jst.go.jp/article/jscej1969/1974/232/1974_232_59/_article/-char/ja/
  • Matsuoka, H., Yao, Y.P., and Sun, D.A., 1999. The Cam-clay models revised by the SMP criterion. Soils and Foundations, 39 (1), 81–95. doi:10.3208/sandf.39.81.
  • Ortiz, M. and Popov, E.P., 1985. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 219 (9), 1561–1576. doi:10.1002/nme.1620210902.
  • Ortiz, M. and Simo, J.C., 1986. Analysis of a new class of integration algorithms for elasto-plastic constitutive r elations. International Journal for Numerical Methods in Engineering, 23 (3), 353–366. doi:10.1002/nme.1620230303.
  • Perez-Foguet, A., Rodriguez-Ferran, A., and Huerta, A., 2001. Consistent tangent matrices for substepping schemes. Computer Methods in Applied Mechanics and Engineering, 190, 4627–4647. doi:10.1016/S0045-78250000336-4
  • Perez-Foguet, A. and Armero, F., 2002. On the formulation of closest-point project algorithms in elasto-plasticity: part II: globally convergent scheme. International Journal for Numerical Methods in Engineering, 53 (2), 331–374. doi:10.1002/nme.279.
  • Petalas, A.L. and Dafalias, Y.F., 2019. Implicit integration of incrementally non-linear, zero- elastic range, bounding surface plasticity. Computers and Geotechnics, 112, 386–402. doi:10.1016/j.compgeo.2019.04.009
  • Richart, F.E., Hall, J.R., and Woods, R.D., 1970. Vibrations of soils and foundations. Englewood Clifs: Prentice-Hall.
  • Simo, J.C. and Hughes, T.J.R., 1998. Computational inelasticity. New York: Springer.
  • Simo, J.C. and Taylor, R.L., 1985. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 483 (1), 101–118. doi:10.1016/0045-78258590070-2.
  • Simo, J.C. and Taylor, R.L., 1986. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22 (3), 649–670. doi:10.1002/nme.1620220310.
  • Sloan, S.W., 1987. Substepping schemes for the numerical integration of elastoplastic stress–strain relations. International Journal for Numerical Methods in Engineering, 24 (5), 893–911. doi:10.1002/nme.1620240505.
  • Sloan, S.W., Abbo, A.J., and Sheng, D.C., 2001. Refined explicit integration of elastoplastic models with automatic error control. Engineering Computations, 18, 121–194. doi:10.1108/02644400110365842
  • Sołowski, W.T. and Gallipoli, D., 2010. Explicit stress integration with error control for the Barcelona basic model: part I: algorithms formulations. Computers and Geotechnics, 37 (1), 59–67. doi:10.1016/j.compgeo.2009.07.004.
  • Verdugo, R. and Ishihara, K., 1996. The steady state of sandy soils. Soils and Foundations, 36 (2), 35–53. doi:10.3208/sandf.36.2_81.
  • Wang, X., Wang, L.B., and Xu, L.M., 2004. Formulation of the return mapping algorithm for elastoplastic soil models. Computers and Geotechnics, 31 (4), 315–338. doi:10.1016/j.compgeo.2004.03.002.
  • Wheeler, S.J., et al., 2003. An anisotropic elastoplastic model for soft clays. Canadian Geotechnical Journal, 40 (2), 403–418. 10.1139/t02-119.
  • Yao, Y.P., Zhou, A.N., and Lu, D.C., 2007. Extended transformed stress space for geomaterials and its application. Journal Engineering Mechanics, 133 (10), 1115–1123. doi:10.1061/ASCE0733-93992007133:101115.
  • Yao, Y.P., Lu, D.C., and Zhou, A.N., 2004. Generalized non-linear strength theory and transformed stress space. Science in China Series E: Technological Sciences, 47 (6), 691–709. doi:10.1360/04ye0199.
  • Yao, Y.P., et al., 2019. Unified hardening (UH) model for clays and sands. Computers and Geotechnics, 110, 326–343. doi:10.1016/j.compgeo.2019.02.024
  • Yao, Y.P. and Sun, D.A., 2000. Application of Lade’s criterion to Cam-clay model. Journal Engineering Mechanics, 126 (1), 112–119. doi:10.1061/ASCE0733-93992000126:1112.
  • Yao, Y.P. and Wang, N.D., 2014. Transformed stress method for generalizing soil constitutive models. Journal Engineering Mechanics, 140 (3), 614–629. doi:10.1061/ASCEEM.1943-7889.0000685.
  • Yu, H.S., 1998. CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22 (8), 621–653. doi:10.1002/SICI1096-985319980822:8<621:AID-NAG937>3.0.CO;2-8.
  • Zhang, Y. and Buscarnera, G., 2015. Implicit integration under mixed controls of a breakage model for unsaturated crushable soils. International Journal for Numerical and Analytical Methods in Geomechanics, 40 (6), 887–916. doi:10.1002/nag.2431.
  • Zhao, J., et al., 2005. Explicit stress integration of complex soil models. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 1209–1229. doi:10.1002/nag.456
  • Zienkiewicz, O.C. and Pande, G.N., 1977. Some useful forms of isotropic yield surfaces for soil and rock mechanics.Finite Elements in Geomechanics. New York: John Wiley &Sons, 179–190.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.