122
Views
1
CrossRef citations to date
0
Altmetric
Articles

Capillary sorption, thermo physical characterizations and simulation study of an eco-friendly building material reinforced with Chamarrops humilis fibres

, , , , , & show all
Pages 625-652 | Received 22 May 2023, Accepted 16 Nov 2023, Published online: 29 Nov 2023

References

  • Ammari, A., Bouassria, K., Zakham, N., Cherraj, M., Bouabid, H., & Charif D’Ouazzane, S. C. (2018). Durability of the earth mortar: Physico-chemical and mineralogical characterization for the reduction of the capillary rise. MATEC Web of Conferences, 149, 7–12. https://doi.org/10.1051/matecconf/201714901024
  • Babaharra, O., Choukairy, K., Faraji, H., & Hamdaoui, S. (2023). Improved heating floor thermal performance by adding PCM microcapsules enhanced by single and hybrid nanoparticles. Heat Transfer, 52(5), 3817–3838. https://doi.org/10.1002/htj.22853
  • Babaharra, O., Choukairy, K., Khallaki, K., & Hayani Mounir, S. (2022). Numerical study of phase change material microencapsulated in a typical multilayer wall for a hot climatic zone. Heat Transfer, 51(1), 1193–1212. https://doi.org/10.1002/htj.22348
  • Babaharra, O., Choukairy, K., Khallaki, K., & Mounir, S. H. (2018). Numerical study of the effect of different construction materials on heating and cooling loads for two climatic zones in Morocco. AIP Conference Proceedings, 2056(1), 020019. https://doi.org/10.1063/1.5084992
  • Babaharra, O., Choukairy, K., Khallaki, K., & Mounir, S. H. (2021). Numerical study of the types of glazing on annual consumption loads and comparison with thermal regulations. AIP Conference Proceedings, 2345(1), 020007. https://doi.org/10.1063/5.0049432
  • Bahammou, Y., Kouhila, M., Babaharra, O., Tagnamas, Z., Lamsyehe, H., Lamharrar, A., & Idlimam, R. (2023). Experimental and numerical study of the impact of ambient air humidity on mortar cement durability using a static gravimetric method. Heat and Mass Transfer, 1–19.
  • Bahammou, Y., Kouhila, M., Moussaoui, H., Lamsyehe, H., Tagnamas, Z., Lamharrar, A., & Idlimam, A. (2022). Evaluation of the influence of ambient air temperature and air velocity on mortar cement durability using a forced convection solar dryer. International Journal of Building Pathology and Adaptation, 40(4), 462–480. https://doi.org/10.1108/IJBPA-08-2020-0069
  • Bahammou, Y., Kouhila, M., Tagnamas, Z., Lamsyehe, H., Lamharrar, A., & Idlimam, A. (2022). Hygroscopic behavior of water absorbed by capillarity and stabilization of a bio-composite building material: Clay reinforced with Chamarrops humilis fibers. International Communications in Heat and Mass Transfer, 135, 106077. https://doi.org/10.1016/j.icheatmasstransfer.2022.106077
  • Benmehdi, H., Hasnaoui, O., Benali, O., & Salhi, F. (2012). Phytochemical investigation of leaves and fruits extracts of Chamaerops humilis L. Journal of Materials and Environmental Science, 3, 320–337.
  • Boumhaout, M., Boukhattem, L., Hamdi, H., & Benhamou, B. (2017). Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Construction and Building Materials, 135, 241–250. https://doi.org/10.1016/j.conbuildmat.2016.12.217
  • Boumhaout, M., Boukhattem, L., Nouh, F. A., Hamdi, H., & Benhamou, B. (2013). Energy efficiency in buildings: Thermophysical characterization of building materials. In 2013 International Renewable and Sustainable Energy Conference (IRSEC) (pp. 391–395). IEEE.
  • Brown, L. R. (2013). Eco-economy: Building an economy for the earth. Routledge.
  • Cadi, H. E., Bouzidi, H. E., Selama, G., Ramdan, B., Majdoub, Y. O. E., Alibrando, F., Arena, K., Lovillo, M. P., Brigui, J., Mondello, L., Cacciola, F., & Salerno, T. M. G. (2021). Elucidation of antioxidant compounds in moroccan Chamaerops humilis L. Fruits by GC–MS and HPLC–MS techniques. Molecules, 26(9), 2710. https://doi.org/10.3390/molecules26092710
  • Ddani, M., Meunier, A., Zahraoui, M., Beaufort, D., El Wartiti, M., Fontaine, C., Boukili, B., & El Mahi, B. (2005). Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (northeast Morocco). Clays and Clay Minerals, 53(3), 250–267. https://doi.org/10.1346/CCMN.2005.0530305
  • Ghosh, A., Ghosh, A., & Neogi, S. (2018). Reuse of fly ash and bottom ash in mortars with improved thermal conductivity performance for buildings. Heliyon, 4(11), e00934. https://doi.org/10.1016/j.heliyon.2018.e00934
  • Hajjaji, M., & Mezouari, H. (2011). A calcareous clay from Tamesloht (Al Haouz, Morocco): Properties and thermal transformations. Applied Clay Science, 51(4), 507–510. https://doi.org/10.1016/j.clay.2011.01.018
  • Klein, S. A. (2018). Trnsys 18. Solar Energy Laboratory, University of Wisconsin-Madison, 3, 7–36. http://www.trnsys.com/
  • Kouhila, M., Bahammou, Y., Lamsyehe, H., Tagnamas, Z., Moussaoui, H., Idlimam, A., & Lamharrar, A. (2022). Evaluating water sorption isotherms, drying kinetics and exergy performance of traditionally earth mortar drying system based on hybrid solar-electrical dryer. International Journal of Building Pathology and Adaptation.
  • Lachkar, N., Lamchouri, F., & Toufik, H. (2020). Socio-economic position of Chamaerops humilis L. var. argentea Andre in the province of Taza (North East Morocco) and impact of the new Moroccan law no 77-15 (Moroccan Official Bulletin No 6422) on the preservation of the environment. Ethnobotany Research and Applications, 20, 1–14. https://doi.org/10.32859/era.20.32.1-14
  • Minke, G. (2013). Building with earth. Birkhäuser.
  • M’lahfi, B., Amegouz, D., & El Qandil, M. (2020). A new approach for the mandatory application of the thermal regulation of construction (RTCM) in the future moroccan buildings. SN Applied Sciences, 2(10), 1–16.
  • Mrajji, O., Ouhaibi, S., Wazna, M. E. L., Bouari, A. E. L., Belouaggadia, N., Ezzine, M., Lbibb, R., & Cherkaoui, O. (2022). Experimental and numerical investigation of eco-friendly materials for building envelope. Advances in Building Energy Research, 16(3), 347–370. https://doi.org/10.1080/17512549.2021.1881615
  • Ouhaibi, S., Gounni, A., Belouaggadia, N., Ezzine, M., & Lbibb, R. (2020). Energy, environmental and economic performance of an external roof for a sustainable building. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–17. https://doi.org/10.1080/15567036.2020.1796847
  • Ouhaibi, S., Mrajji, O., El Wazna, M., Gounni, A., Belouaggadia, N., Ezzine, M., Lbibb, R., El Bouari, A., & Cherkaoui, O. (2022). Sisal-fibre based thermal insulation for use in buildings. Advances in Building Energy Research, 16(4), 489–513. https://doi.org/10.1080/17512549.2021.1982768
  • Salih, Tawfeeq, Wasmi, M, Jawad, Lamyaa. (2022). Evaluating the thermal insulation performance of composite panels made of natural Luffa fibres and urea-formaldehyde resin for buildings in the hot arid region. Advances in Building Energy Research, 16(5), 696–710.
  • Salih, T. W. M., & Jawad, L. A. A. (2022). Evaluating the thermal insulation performance of composite panels made of natural Luffa fibres and urea-formaldehyde resin for buildings in the hot arid region. Advances in Building Energy Research, 16(5), 696–710. https://doi.org/10.1080/17512549.2022.2098534
  • Schabowicz, K. (2019). Non-destructive testing of materials in civil engineering. In Materials (Vol. 12, Issue 19), p. 3237. Multidisciplinary Digital Publishing Institute.
  • Slávik, R., Struhárová, A., & Čekon, M. (2021). Reliability study of equilibrium moisture content methods for sorption/desorption isotherms determination of autoclaved aerated concrete. Applied Sciences, 11(2), 1–19. https://doi.org/10.3390/app11020824
  • Stephenson, D. G. (1971). Calculation of heat conduction transfer functions for multi-layer slabs. ASHRAE Transactions, 77(2), 117–126.
  • Wakil, M., El Mghari, H., Kaitouni, S. I., & El Amraoui, R. (2023). Thermal energy performance of compressed earth building in two different cities in Moroccan semi-arid climate. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.06.008
  • Yazdani, M., Sazandehchi, P., Azizi, M., & Ghobadi, P. (2006). Moisture sorption isotherms and isosteric heat for pistachio. European Food Research and Technology, 223(5), 577–584. https://doi.org/10.1007/s00217-006-0256-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.