79
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation integrating passive cooling strategies for building thermal comfort in Guinea's climates

, , , &
Pages 82-103 | Received 07 Nov 2023, Accepted 15 Feb 2024, Published online: 28 Feb 2024

References

  • Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—Its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20–32. https://doi.org/10.1016/j.jsams.2007.07.003
  • Burr, R. E. (1991). Heat illness: A handbook for medical officers. Army Research Inst of Environmental Medicine Natick MA.
  • CONTAM. (2012). CONTAM. NIST. https://www.nist.gov/services-resources/software/contam.
  • Cóstola, D., Blocken, B., & Hensen, J. L. M. (2009). Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment, 44(10), 2027–2036. https://doi.org/10.1016/j.buildenv.2009.02.006
  • Dols, W. S., Emmerich, S. J., & Polidoro, B. J. (2016). Using coupled energy, airflow and indoor air quality software (TRNSYS/CONTAM) to evaluate building ventilation strategies. Building Services Engineering Research and Technology, 37(2), 163–175. https://doi.org/10.1177/0143624415619464
  • EN-15251. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. British Standards Institution.
  • Gamero-Salinas, J., Monge-Barrio, A., Kishnani, N., López-Fidalgo, J., & Sánchez-Ostiz, A. (2021). Passive cooling design strategies as adaptation measures for lowering the indoor overheating risk in tropical climates. Energy and Buildings, 252, 111417. https://doi.org/10.1016/j.enbuild.2021.111417
  • Grundstein, A. J., Ramseyer, C., Zhao, F., Pesses, J. L., Akers, P., Qureshi, A., Becker, L., Knox, J. A., & Petro, M. (2012). A retrospective analysis of American football hyperthermia deaths in the United States. International Journal of Biometeorology, 56(1), 11–20. https://doi.org/10.1007/s00484-010-0391-4
  • Guarda, E. L. A. d., Domingos, R. M. A., Gabriel, E., Durante, L. C., Moreira, J. V. R., & Sanches, J. C. M. (2020). Use of thermal insulation in the envelope to mitigate energy consumption in the face of climate change for mid-western Brazil. IOP Conference Series: Earth and Environmental Science, 410(1), 012009. https://doi.org/10.1088/1755-1315/410/1/012009
  • Hashemi, A., & Khatami, N. (2017). Effects of solar shading on thermal comfort in Low-income tropical housing. Energy Procedia, 111, 235–244. https://doi.org/10.1016/j.egypro.2017.03.025
  • IEA. (2022a). Cooling – IEA. https://www.iea.org/energy-system/buildings/space-cooling.
  • IEA. (2022b). No Title. https://www.iea.org/energy-system/buildings.
  • IFDD. (2015). Guide du bâtiment durable en régions tropicales Tome 1 : Stratégies de conception des nouveaux bâtiments en régions tropicales. http://www.ifdd.francophonie.org/ressources/ressourcespub.php?id=8.
  • IPCC, I. P. on C. C. (2022). Framing and context. In Global warming of 1.5°C: IPCC special report on impacts of global warming of 1.5°C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty (pp. 49–92). Cambridge University Press. https://doi.org/10.1017/9781009157940
  • ISO-7730. (2005). Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. https://www.iso.org/obp/ui#iso:std:iso:7730:ed-3:v1:en.
  • Iwaro, J., & Mwasha, A. (2019). Effects of using coconut fiber–insulated masonry walls to achieve energy efficiency and thermal comfort in residential dwellings. Journal of Architectural Engineering, 25(1), 4019001. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000341
  • Jega, A. I., & Al-Din, S. S. M. (2023). Implication of shading passive strategies in buildings of hot and humid climates for energy optimization: Lessons from vernacular dwellings in Nigeria. Journal of Salutogenic Architecture, 2(1), 50–69. https://doi.org/10.38027/jsalutogenic_vol2no1_4
  • Kabore, M., Wurtz, E., Coulibaly, Y., Messan, A., & Moreaux, P. (2014). Assessment on passive cooling techniques to improve steel roof thermal performance in hot tropical climate. International Journal of Energy and Power Engineering, 3(6), 287. https://doi.org/10.11648/j.ijepe.20140306.12
  • Lapisa, R. (2019). The effect of building geometric shape and orientation on its energy performance in various climate regions. International Journal of GEOMATE, 16(53), 113–119. https://doi.org/10.21660/2019.53.94984.
  • Lapisa, R., Karudin, A., Rizal, F., & Krismadinata, N. (2019). Passive cooling strategies in roof design to improve the residential building thermal performance in tropical region. Asian Journal of Civil Engineering, 20(4), 571–580. https://doi.org/10.1007/s42107-019-00125-1
  • Leo Samuel, D. G., Dharmasastha, K., Shiva Nagendra, S. M., & Maiya, M. P. (2017). Thermal comfort in traditional buildings composed of local and modern construction materials. International Journal of Sustainable Built Environment, 6(2), 463–475. https://doi.org/10.1016/j.ijsbe.2017.08.001
  • Marcolini, M., Almeida, R. M. S. F., & Barreira, E. (2022). Evaluation of the effect of passive cooling techniques on thermal comfort using test cells in the northern region of Brazil. Applied Sciences, 12(3), 1546. https://doi.org/10.3390/app12031546
  • Meteonorm. (2012). Meteonorm – Global meteorological database, Meteotest. In Meteonorm (en). https://meteonorm.com/en/.
  • Mohammadpourkarbasi, H., Jackson, I., Nukpezah, D., Appeaning Addo, I., & Assasie Oppong, R. (2022). Evaluation of thermal comfort in library buildings in the tropical climate of Kumasi, Ghana. Energy and Buildings, 268, 112210. https://doi.org/10.1016/j.enbuild.2022.112210
  • Ng, L., & Persily, A. K. (2011). Airflow and Indoor Air Quality Analyses Capabilities of Energy Simulation Software. https://www.nist.gov/publications/airflow-and-indoor-air-quality-analyses-capabilities-energy-simulation-software.
  • ONU-Habitat. (2020). Diagnostic du developpement urbain, de la mise en oeuvre des politiques et de défis de l’urbanisation durable en Guinée. http://files/1024/Diagnostic du développement urbain, de la mise en œuvre des politiques publiques et des défis de l’urbanisation durable en Guinée.pdf.
  • Ouedraogo, A. L. S.-N., Messan, A., Yamegueu, D., & Coulibaly, Y. (2022). A model for thermal comfort assessment of naturally ventilated housing in the hot and dry tropical climate. International Journal of Building Pathology and Adaptation, 40(2), 183–201. https://doi.org/10.1108/IJBPA-02-2021-0011
  • Persily, A. K. (1998). Airtightness of commercial and institutional buildings: Blowing holes in the myth of tight buildings. NIST. https://www.nist.gov/publications/airtightness-commercial-and-institutional-buildings-blowing-holes-myth-tight-buildings.
  • Rawat, M., & Singh, R. N. (2021). A study on the comparative review of cool roof thermal performance in various regions. Energy and Built Environment, 3(3), 327–347. https://doi.org/10.1016/j.enbenv.2021.03.001.
  • Sa, K. (2018). Trnsys 18: A transient system simulation program. Solar Energy Laboratory, University of Wisconsin. http://www.trnsys.com/.
  • Sadineni, S. B., Madala, S., & Boehm, R. F. (2011). Passive building energy savings: A review of building envelope components. Renewable and Sustainable Energy Reviews, 15(8), 3617–3631. https://doi.org/10.1016/j.rser.2011.07.014
  • Samani, P., Leal, V., Mendes, A., & Correia, N. (2016). Comparison of passive cooling techniques in improving thermal comfort of occupants of a pre-fabricated building. Energy and Buildings, 120, 30–44. https://doi.org/10.1016/j.enbuild.2016.03.055
  • Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085–3102. https://doi.org/10.1016/j.solener.2010.12.023
  • Sigalingging, R. C., Chow, D., & Sharples, S. (2020). Applying the Passivhaus standard to a terraced house in a hot and humid tropical climate – Evaluation of comfort and energy performance. Building Services Engineering Research and Technology, 41(3), 247–260. https://doi.org/10.1177/0143624420912511
  • Swami, M. V., & Chandra, S. (1988). Correlations for pressure distribution on buildings and calculation of natural-ventilation airflow. ASHRAE Transactions, 94(3112), 243–266.
  • T.S. UNI, 11300-1. (2008). Energy performance of buildings—Part 1, calc. Energy use Sp. Heat. Cool (first ed.). UNI. http://files/1516/scholar_lookup.html.
  • Tuohy, P. G., Humphreys, M. A., Nicol, F., Rijal, H. B., & Clarke, J. A. (2009). Occupant behaviour in naturally ventilated and hybrid buildings. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Transactions, 115(1), 16–27. https://strathprints.strath.ac.uk/16470/.
  • Yoo, J., & Rohli, R. V. (2016). Global distribution of Köppen–Geiger climate types during the Last Glacial Maximum, Mid-Holocene, and present. Palaeogeography, Palaeoclimatology, Palaeoecology, 446, 326–337. https://doi.org/10.1016/j.palaeo.2015.12.010
  • Zakaria, N., Zain-Ahmed, A., Ariffin, N., Abdul Halim, N., & Morris, F. (2011). Thermal energy evaluation of building with ceiling insulation in warm-humid tropical climate. In 2011 IEEE colloquium on humanities, science and engineering (CHUSER) (pp. 233–238). https://doi.org/10.1109/CHUSER.2011.6163723.
  • Zoure, A. N., & Genovese, P. V. (2023). Implementing natural ventilation and daylighting strategies for thermal comfort and energy efficiency in office buildings in Burkina Faso. Energy Reports, 9, 3319–3342. https://doi.org/10.1016/j.egyr.2023.02.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.