79
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Plasma-sprayed Al2O3-TiB2-SiC ternary composite coatings and its wear behaviour based on SiC content

, , &
Pages 309-323 | Received 18 Mar 2023, Accepted 30 Jun 2023, Published online: 16 Jul 2023

References

  • Gupta A, Pattnayak A, Abhijith NV, et al. Development of alumina-based hybrid composite coatings for high temperature erosive and corrosive environments. Ceram Int. 2023;49(1):862–874. doi:10.1016/j.ceramint.2022.09.059
  • Sarikaya O. Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process. Surf Coat Technol. 2005;190(2–3):388–393. doi:10.1016/j.surfcoat.2004.02.007
  • Grewal HS, Singh H, Agrawal A. Microstructural and mechanical characterization of thermal sprayed nickel–alumina composite coatings. Surf Coat Technol. 2013;216:78–92. doi:10.1016/j.surfcoat.2012.11.029
  • Masanta M, Shariff SM, Choudhury AR. Tribological behavior of TiB2–TiC–Al2O3 composite coating synthesized by combined SHS and laser technology. Surf Coat Technol. 2010;204(16–17):2527–2538. doi:10.1016/j.surfcoat.2010.01.027
  • Masanta M, Shariff SM, Choudhury AR. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2–TiC–Al2O3 composite coating developed by SHS and laser cladding. Mater Sci Eng A. 2011;528(16–17):5327–5335. doi:10.1016/j.msea.2011.03.057
  • Chatterjee S, Shariff SM, Padmanabham G, et al. Study on the effect of laser post-treatment on the properties of nanostructured Al2O3–TiB2–TiN based coatings developed by combined SHS and laser surface alloying. Surf Coat Technol. 2010;205(1):131–138. doi:10.1016/j.surfcoat.2010.06.015
  • Li Z, Wei M, Xiao K, et al. Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding. Ceram Int. 2019;45(1):115–121. doi:10.1016/j.ceramint.2018.09.140
  • Chatterjee S, Majumdar JD, Singaiah K, et al. Performance evaluation of laser surface alloyed hard nanostructured Al2O3–TiB2–TiN composite coatings with in-situ and ex-situ reinforcements. Surf Coat Technol. 2011;205(11):3478–3484. doi:10.1016/j.surfcoat.2010.12.015
  • Ko YM, Kwon WT, Kim Y-W. Development of Al2O3–SiC composite tool for machining application. Ceram Int. 2004;30(8):2081–2086. doi:10.1016/j.ceramint.2003.11.011
  • Zhou XP, Li M, Zhou X. Process study on prepared Al2O3-TiB2 composite coating by reactive spray. Adv Mater Res. 2012;472:309–312. doi:10.4028/www.scientific.net/AMR.472-475.309
  • Smirnov BI, Nikolaev VI, Burenkov YA, et al. Some physical properties of an Al2O3-SiC-TiC composite. Tech Phys Lett 1997;23(12):923–926. doi:10.1134/1.1261934
  • Smirnov BI, Nikolaev VI, Orlova TS, et al. Mechanical properties and microstructure of an Al2O3–SiC–TiC composite. Mater Sci Eng A. 1998;242(1–2):292–295. doi:10.1016/S0921-5093(97)00744-2
  • Nallusamy T. High-temperature stability of titanium boride reinforced alumina-silicon carbide based composite. Silicon. 2021;13(4):1087–1095. doi:10.1007/s12633-020-00498-y
  • Jianxin D, Xing A. Sic whisker reinforced Al2O3/TiB2 ceramic composites. Chin Ceram Soc. 1995;23(4):385–392.
  • Jianxin D. Friction and wear behaviour of Al2O3/TiB2/SiCw ceramic composites at temperatures up to 800 C. Ceram Int 2001;27(2):135–141. doi:10.1016/S0272-8842(00)00052-3
  • Masanta M, Ganesh P, Kaul R, et al. Microstructure and mechanical properties of TiB2–TiC–Al2O3–SiC composite coatings developed by combined SHS, sol–gel and laser technology. Surf Coat Technol. 2010;204(21–22):3471–3480. doi:10.1016/j.surfcoat.2010.04.018
  • Ali A, Ahmad SN. Mechanical and tribological behavior of TiB2/Al2O3 coating on high-speed steel using electron beam deposition. Tribol Int 2022;174:107681. doi:10.1016/j.triboint.2022.107681
  • Masanta M, Shariff SM, Choudhury AR. A comparative study of the tribological performances of laser clad TiB2–TiC–Al2O3 composite coatings on AISI 1020 and AISI 304 substrates. Wear. 2011;271(7–8):1124–1133. doi:10.1016/j.wear.2011.05.009
  • Cheng HC, Li ZX, Shi YW. Microstructure and wear resistance of Al2O3–TiB2 composite coating deposited by axial plasma spraying. Surf Eng 2008;24(6):452–457. doi:10.1179/026708408X334122
  • Cheng HC, Li ZX, Shi YW. Effects of TIG surface treating on microstructural characteristics and mechanical properties of Al2O3–TiB2 coating by APS. Mater Sci Technol. 2011;27(1):194–200. doi:10.1179/174328409X418946
  • Alvar FS, Heydari M, Kazemzadeh A, et al. Synthesis and characterization of corrosion-resistant and biocompatible Al2O3–TiB2 nanocomposite films on pure titanium. Ceram Int. 2020;46(4):4215–4221. doi:10.1016/j.ceramint.2019.10.140
  • Alvar FS, Heydari M, Kazemzadeh A, et al. Al2O3-TiB2 nanocomposite coating deposition on titanium by air plasma spraying. Mater Today Proc. 2018;5(7):15739–15743. doi:10.1016/j.matpr.2018.04.186
  • Tekmen C, Tsunekawa Y, Okumiya M. In-situ TiB2 and Al2O3 formation by DC plasma spraying. Surf Coat Technol. 2008;202(17):4170–4175. doi:10.1016/j.surfcoat.2008.03.012
  • Tekmen C, Tsunekawa Y, Okumiya M. In-situ TiB2–Al2O3 formed composite coatings by atmospheric plasma spraying: influence of process parameters and in-flight particle characteristics. Surf Coat Technol. 2009;203(12):1649–1655. doi:10.1016/j.surfcoat.2008.12.016
  • Di Girolamo G, Brentari A, Blasi C, et al. Microstructure and mechanical properties of plasma sprayed alumina-based coatings. Ceram Int. 2014;40(8):12861–12867. doi:10.1016/j.ceramint.2014.04.143
  • Xu J, Zou B, Tao S, et al. Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders. J Alloys Compd 2016;672:251–259. doi:10.1016/j.jallcom.2016.02.116
  • Zou K, Zou JP, Deng CM, et al. Preparation and properties of supersonic atmospheric plasma sprayed TiB2− SiC coating. Trans Nonferrous Met Soc China. 2021;31(1):243–254. doi:10.1016/S1003-6326(20)65491-7
  • Luo P, Dong S, Yangli A, et al. Electrospark deposition of Al2O3–TiB2/Ni composite-phase surface coatings on Cu–Cr–Zr alloy electrodes. J Asian Ceram Soc. 2015;3(1):103–107. doi:10.1016/j.jascer.2014.11.005
  • Mousavian RT, Sharafi S, Roshan MR, et al. Effect of mechanical activation of reagents’ mixture on the high-temperature synthesis of Al2O3–TiB2 composite powder. J Therm Anal Calorim 2011;104(3):1063–1070. doi:10.1007/s10973-010-1272-0
  • Yeh CL, Li RF. Formation of TiB2–Al2O3 and NbB2–Al2O3 composites by combustion synthesis involving thermite reactions. Chem Eng J 2009;147(2–3):405–411. doi:10.1016/j.cej.2009.01.007
  • Meyers MA, Olevsky EA, Ma J, et al. Combustion synthesis/densification of an Al2O3–TiB2 composite. Mater Sci Eng A. 2001;311(1–2):83–99. doi:10.1016/S0921-5093(01)00930-3
  • Standard A. G99, Standard test method for wear testing with a pin-on-disk apparatus. West Conshohocken (PA): ASTM Int.; 2006.
  • Li X, Olofsson U, Bergseth E. Pin-on-disc study of tribological performance of standard and sintered gear materials treated with triboconditioning process: pretreatment by pressure-induced tribofilm formation. Tribol Trans 2017;60(1):47–57. doi:10.1080/10402004.2016.1146379
  • Ardiani NR, Setianto S, Santosa B, et al. Quantitative analysis of iron sand mineral content from the south coast of cidaun, west java using rietveld refinement method. AIP Conf Proc. 2020;2219(1):40003. doi:10.1063/5.0003018
  • Watari K. High thermal conductivity non-oxide ceramics. J Ceram Soc Japan. 2001;109(1265):S7–S16. doi:10.2109/jcersj.109.S7
  • Limpichaipanit A, Todd RI. The relationship between microstructure, fracture and abrasive wear in Al2O3/SiC nanocomposites and microcomposites containing 5 and 10% SiC. J Eur Ceram Soc. 2009;29(13):2841–2848. doi:10.1016/j.jeurceramsoc.2009.03.023
  • Krell A. A new look at the influences of load, grain size and grain boundaries on the room temperature hardness of ceramics. Int J Refract Met Hard Mater. 1998;16(4–6):331–335. doi:10.1016/S0263-4368(98)00056-0
  • Xu J, Zou B, Fan X, et al. Reactive plasma spraying synthesis and characterization of TiB2–TiC–Al2O3/Al composite coatings on a magnesium alloy. J Alloys Compd. 2014;596:10–18. doi:10.1016/j.jallcom.2014.01.178
  • Pantelis DI, Psyllaki P, Alexopoulos N. Tribological behaviour of plasma-sprayed Al2O3 coatings under severe wear conditions. Wear. 2000;237(2):197–204. doi:10.1016/S0043-1648(99)00324-5
  • Dey D, Bal KS, Khan I, et al. Study of tribo-mechanical properties of laser clad Al2O3-TiB2-TiN-BN‖ Ti-6Al-4 V alloy. Opt Laser Technol. 2022;150:107982. doi:10.1016/j.optlastec.2022.107982
  • Gudlur P, Forness A, Lentz J, et al. Thermal and mechanical properties of Al/Al2O3 composites at elevated temperatures. Mater Sci Eng A. 2012;531:18–27. doi:10.1016/j.msea.2011.10.001
  • Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000;246(1–2):1–11. doi:10.1016/S0043-1648(00)00488-9
  • Rabiezadeh A, Ataie A, Hadian AM. Sintering of Al2O3–TiB2 nano-composite derived from milling assisted sol–gel method. Int J Refract Met Hard Mater. 2012;33:58–64. doi:10.1016/j.ijrmhm.2012.02.013
  • Deng W, Li S, Hou G, et al. Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts. Ceram Int. 2017;43(9):6976–6986. doi:10.1016/j.ceramint.2017.02.122
  • Khorsand A, Majidian H, Farvizi M. Wear behavior and microstructure of alumina-mullite-zirconia composites prepared by a novel method: coating of zircon powder by aluminum alkoxide. Ceram Int. 2022;48(22):33594–33603. doi:10.1016/j.ceramint.2022.07.304
  • Wu D, Lu F, Zhao D, et al. Effect of doping SiC particles on cracks and pores of Al2O3–ZrO2 eutectic ceramics fabricated by directed laser deposition. J Mater Sci. 2019;54(13):9321–9330. doi:10.1007/s10853-019-03555-z
  • Basu B, Kalin M. Tribology of ceramics and composites: a materials science perspective. United Kingdom: John Wiley & Sons; 2011.
  • Gupta Y, Kumar BVM. Zrb2–SiC composites for sliding wear contacts: influence of SiC content and counterbody. Ceram Int. 2022;48(10):14560–14567. doi:10.1016/j.ceramint.2022.01.349
  • Sengupta P, Basu S, Manna I. Comparative evaluation of TiC and/or WC addition on microstructure, mechanical properties, thermal residual stress and reciprocating wear behaviour of ZrB2–20SiC composites. J Mater Sci. 2023;58:420–442. doi:10.1007/s10853-022-08021-x
  • Savchenko N, Mirovoy Y, Burlachenko A, et al. Subsurface multilayer evolution of ZrB2–SiC ceramics in high-speed sliding and adhesion transfer conditions. Wear. 2021;482:203956. doi:10.1016/j.wear.2021.203956
  • Dong Y, Yan D, He J, et al. Dry sliding wear behavior of ceramic-metal composite coatings prepared by plasma spraying of self-reacting powders. J Therm Spray Technol. 2006;15:323–328. doi:10.1361/105996306X92541
  • Zhou Y, Zhang H, Qian B. Friction and wear properties of the co-deposited Ni–SiC nanocomposite coating. Appl Surf Sci. 2007;253(20):8335–8339. doi:10.1016/j.apsusc.2007.04.047
  • Zhang W, Yamashita S, Kita H. Self lubrication of pressureless sintered SiC ceramics. J Mater Res Technol. 2020;9(6):12880–12888. doi:10.1016/j.jmrt.2020.09.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.