172
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in the research on natural composite brake pads: a comprehensive review

, ORCID Icon &
Pages 237-259 | Received 12 Apr 2023, Accepted 13 Jul 2023, Published online: 23 Jul 2023

References

  • Praveenkumar B, Gnanaraj SD. Case studies on the applications of phenolic resin-based composite materials for developing Eco-friendly brake pads. J. Inst. Eng. Ser. D. 2020;101:327–334. doi:10.1007/s40033-020-00231-4
  • Ilanko AK, Vijayaraghavan S. Wear mechanism of flax / basalt fiber-reinforced eco friendly brake friction materials, Tribol. Mater. Surfaces Interfaces. 2017;11:47–53. doi:10.1080/17515831.2017.1299323
  • Md JA, Saibalaji MA, Surya Rajan B, et al. Characterization of alkaline treated Areva Javanica fiber and its tribological performance in phenolic friction composites. Mater Res Express. 2019;6:115307, doi:10.1088/2053-1591/ab43ad
  • Mylsamy B, Chinnasamy V, Palaniappan SK, et al. Effect of surface treatment on the tribological properties of coccinia indica cellulosic fiber reinforced polymer composites. J. Mater. Res. Technol. 2020;9:16423–16434. doi:10.1016/j.jmrt.2020.11.100
  • Sathish S, Kumaresan K, Prabhu L, et al. Experimental investigation of mechanical and ftir analysis of flax fiber/epoxy composites incorporating SiC, Al2O3 and graphite. Rev. Rom. Mater. Rom. J. Mater. 2018;48:476–482.
  • Li M, Pu Y, Thomas VM, et al. Recent advancements of plant-based natural fiber–reinforced composites and their applications, compos. Part B Eng. 2020;200:108254, doi:10.1016/j.compositesb.2020.108254
  • Pankaj CS, Jawalkar SK. Critical review on chemical treatment of natural fibers to enhance mechanical properties of Bio composites. Silicon. 2022;14:5103–5124. doi:10.1007/s12633-021-01194-1
  • Liu Y, Lv X, Bao J, et al. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites, carbohydr. Polym. 2019;218:179–187. doi:10.1016/j.carbpol.2019.04.088
  • Ganesh Babu L. Investigation on the mechanical and morphological characteristics of caryota urens spadix fibre reinforced With polyester composites. J. Balk. Tribol. Assoc. 2020;26:128–169.
  • Rajini N, Mayandi K, Manoj Prabhakar M, et al. Tribological properties of cyperus pangorei fibre reinforced polyester composites(friction and wear behaviour of cyperus pangorei fibre/polyester composites). J. Nat. Fibers. 2021;18:261–273. doi:10.1080/15440478.2019.1621232
  • Kalimuthu M, Nagarajan R, Batcha AA, et al. Mechanical property and morphological analysis of polyester composites reinforced with cyperus pangorei fibers. Bionic Eng. 2019;16:164–174. doi:10.1007/s42235-019-0015-6
  • Sarikaya E, Çallioğlu H, Demirel H. Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Part B Eng. 2019;167:461–466. doi:10.1016/j.compositesb.2019.03.020
  • Lokesh KS, Shanmugam BK, Mayya S. Experimentation and prediction analysis on the mechanical performance of fish scale and coconut shell powder-based composites. J. Nat. Fibers. 2022;19:7750–7761. doi:10.1080/15440478.2021.1958410
  • Soundhar A, Kandasamy J. Mechanical, chemical and morphological analysis of crab shell/sisal natural fiber hybrid composites. J. Nat. Fibers. 2021;18:1518–1532. doi:10.1080/15440478.2019.1691127
  • Kumar S, Patel VK, Mer KKS, et al. Himalayan natural fiber-reinforced epoxy composites: effect ofgrewia optiva/bauhinia vahliifibers on physico-mechanical and Dry sliding wear behavior. J. Nat. Fibers. 2021;18:192–202. doi:10.1080/15440478.2019.1612814
  • Sumesh KR, Kavimani V, Rajeshkumar G, et al. Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Ind Text. 2020;51(4_suppl):5910S–5937S.doi:10.1177/1528083720971344
  • Sathees Kumar S. Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications. Data Br. 2020;28:105054, doi:10.1016/j.dib.2019.105054
  • https://www.ufpt.com/materials/natural-fibers.html, (n.d.).
  • Biocomposites Experimental Pavilion. https://www.architonic.com/en/project/biomat-group-at-itke-biocomposites-experimental-pavilion/20013658.
  • Wilmington start-up’s hemp-based prosthetics could be cheaper for users, safer for manufacturers. https://portcitydaily.com/story/2018/06/26/wilmington-start-ups-hemp-based-prosthetics-could-be-cheaper-for-users-safer-for-manufacturers/.
  • Grand View Research. Natural fibre composites (NFC) market. size, share & trends analysis Re-port. by Raw material, by matrix, by technology, by application, and segment forecasts: 2018–2024. San Francisco (CA): Grand View Research; 2018.
  • Gebremedhin N, Rotich GK. Manufacturing of bathroom wall tile composites from recycled Low-density polyethylene reinforced with pineapple leaf fiber. Int. J. Polym. Sci. 2020: 1–9. doi:10.1155/2020/2732571
  • Chandramohan D, Presin Kumar AJ. Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data Br. 2017;13:460–468. doi:10.1016/j.dib.2017.06.020
  • De Fazio D, Boccarusso L, Durante M. Tribological behaviour of hemp, glass and carbon fibre composites. Biotribology. 2020;21:100113, doi:10.1016/j.biotri.2019.100113
  • Ugochukwu S, Ridzuan MJM, Abdul Majid MS, et al. Effect of thermal ageing on the scratch resistance of natural-fibre-reinforced epoxy composites. Struct. 2021;261:113586, doi:10.1016/J.COMPSTRUCT.2021.113586
  • Cavalcanti DKK, Banea MD, Neto JSS, et al. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Part B Eng. 2019;175:107149, doi:10.1016/j.compositesb.2019.107149
  • Surya Rajan B, Balaji MAS, Saravanakumar SS. Effect of chemical treatment and fiber loading on physico-mechanical properties ofProsopis juliflorafiber reinforced hybrid friction composite. Mater Res Express. 2019;6:0035302, doi:10.1088/2053-1591/aaf3cf
  • Megahed M, Abo-bakr RM, Mohamed SA. Optimization of hybrid natural laminated composite beams for a minimum weight and cost design. Struct. 2020;239:111984, doi:10.1016/J.COMPSTRUCT.2020.111984
  • Jawaid M, Awad S, Fouad H, et al. Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites. Struct. 2021;277:114644, doi:10.1016/J.COMPSTRUCT.2021.114644
  • Alfatah T, Mistar EM, Syabriyana M, et al. Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. J. 2022;61:4945–4962. doi:10.1016/j.aej.2021.09.061
  • Mohamed AF, Babakor BO, Ghazaly NM, et al. Evaluation of milled chamaerops fruit shell for production of brake friction materials. Int. J. Adv. Sci. Technol. 2019;28:783–791.
  • Bretotean CP, Lemle LD, Szabo A. Ecological composites materials for brake pads using shells as filler material. Plast. 2019;56:588–591. doi:10.37358/MP.19.3.5234
  • Akıncıoğlu G, Akıncıoğlu S, Öktem H, et al. Experimental investigation on the friction characteristics of hazelnut powder reinforced brake pad. Reports Mech. Eng. 2021;2:23–30. doi:10.31181/rme200102023a
  • Akincioglu G, Akincioglu S, Öktem H. Wear response of non-asbestos brake pad composites reinforced with walnut shell dust. J. Aust. Ceram. Soc. 2020;56:1061–1072. doi:10.1007/s41779-020-00452-6
  • Kannan G, Thangaraju R, Kayaroganam P, et al. The combined effect of banana fiber and Fly Ash reinforcements on the mechanical behavior of polyester composites. J. Nat. Fibers. 2022;19:11384–11403. doi:10.1080/15440478.2022.2025977
  • Bharath KN, Manjunatha GB, Santhosh K.. Failure analysis in biocomposites, fibre-reinforced composites and hybrid composites. anal. biocomposites, fibre-reinforced compos. In: Mohammad Jawaid, Mohamed Thariq, Naheed Saba, editors. Woodhead Publishing Series in Composites Science and Engineering, Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites Woodhead Publishing; 2019. p. 97–107. doi:10.1016/B978-0-08-102293-1.00005-X
  • Tusnim J, Jenifar NS, Hasan M. Effect of chemical treatment of jute fiber on thermo-mechanical properties of jute and sheep wool fiber reinforced hybrid polypropylene composites. J Thermoplast Compos Mater. 2022;35:1981–1993. doi:10.1177/0892705720944220
  • Ganesan K, Kailasanathan C, Sanjay MR, et al. A new assessment on mechanical properties of jute fiber mat with egg shell powder/nanoclay-reinforced polyester matrix composites. J. Nat. Fibers. 2020;17:482–490. doi:10.1080/15440478.2018.1500340
  • Sahoo DR, Priyadarshini M, Trinath B. Complex catalysed green synthesis and characterization of P(AN-co-MMA)/prawn shell powder biocomposite. Today Proc. 2021;47:1224–1228. doi:10.1016/j.matpr.2021.06.455
  • Singaravelu DL, Rahul RM, Vijay R, et al. Development and performance evaluation of Eco-friendly crab shell powder based brake pads for automotive applications. Int. J. Automot. Mech. Eng. 2019;16:6502–6523. doi:10.15282/ijame.16.2.2019.4.0491
  • Surya Rajan B, Balaji MAS, Noorani MAAB, et al. Tribological performance evaluation of newly synthesized silane treated shell powders in friction composites. Mater Res Express. 2019;6:0065317, doi:10.1088/2053-1591/ab08e0
  • Adegbola J, Adedayo SM, Ohijeagbon IO. Development of cow bone resin composites as a friction material for automobile braking systems. J. Prod. Eng. 2017;20:69–74. doi:10.24867/JPE-2017-01-069
  • García E, Louvier-Hernández JF, Cervantes-Vallejo FJ, et al. Mechanical, dynamic and tribological characterization of HDPE/peanut shell composites. Test. 2021;98:107075, doi:10.1016/J.POLYMERTESTING.2021.107075
  • Durowaye S, Lawal G, Sekunowo O, et al. Synthesis and characterization of hybrid polypropylene matrix composites reinforced with carbonizedTerminalia catappa shell particles and Turritela communis shell particles. J. Taibah Univ. Sci. 2018;12:79–86. doi:10.1080/16583655.2018.1451112
  • Nascimento HM, Granzotto DCT, Radovanovic E, et al. Obtention and characterization of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L. Part B Eng. 2021;227:109414, doi:10.1016/j.compositesb.2021.109414
  • Sari PS, Thomas S, Spatenka P, et al. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Part B Eng. 2019;177:107344, doi:10.1016/j.compositesb.2019.107344
  • Kumar R, Gunjal J, Chauhan S. Effect of carbonization temperature on properties of natural fiber and charcoal filled hybrid polymer composite. Part B Eng. 2021;217:108846, doi:10.1016/j.compositesb.2021.108846
  • Veeman D, Katiyar JK, Ruggiero A. Tribo-mechanical performance of brake composite material: a comprehensive review. Tribology - Materials, Surfaces & Interfaces 2023:1–24. doi:10.1080/17515831.2023.2211819
  • Ahmadijokani F, Shojaei A, Dordanihaghighi S, et al. Effects of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composites. Wear. 2020;280–453:203280, doi:10.1016/j.wear.2020.203280
  • Öztürk B, Mutlu T. Effects of zinc borate and Fly Ash on the mechanical and tribological characteristics of brake friction materials. Trans. 2016;59:622–631. doi:10.1080/10402004.2015.1096984
  • https://www.epa.gov/asbestos/epa-actions-protect-public-exposure-asbestos.
  • Singaravelu DL, Vijay R, Filip P. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear. 2019;1129–1141:1129–1141. doi:10.1016/j.wear.2018.12.036
  • Sai Balaji MA, Katiyar JK, Eakambaram A, et al. Comparative study of sintered and composite brake pad for wind turbine applications. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023;237:1430–1445. doi:10.1177/13506501231159188
  • Park J, Gweon J, Seo H, et al. Effect of space fillers in brake friction composites on airborne particle emission: A case study with BaSO4, Ca(OH)2, and CaCO3. Int. 2022;165:107334, doi:10.1016/j.triboint.2021.107334
  • Aranganathan N, Bijwe J. Development of copper-free eco-friendly brake-friction material using novel ingredients. Wear. 2016;79–91:79–91. doi:10.1016/j.wear.2016.01.023
  • Sai Krishnan G, Jayakumari LS, Babu LG, et al. Investigation on the physical, mechanical and tribological properties of areca sheath fibers for brake pad applications. Mater Res Express. 2019;6:0085109, doi:10.1088/2053-1591/ab2615
  • Raj S, Christy TV, Gnanaraj D, et al. Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials. Sci. Technol. an Int. J. 2020;23:445–451. doi:10.1016/j.jestch.2019.06.007
  • Sai Krishnan G, Babu LG, Pradhan R, et al. Study on tribological properties of palm kernel fiber for brake pad applications. Mater Res Express. 2020;7:0015102, doi:10.1088/2053-1591/ab5af5
  • https://www.championautoparts.eu.
  • https://www.repairsmith.com/i/blog/how-long-do-brake-pads-last.
  • Akıncıoğlu G, Uygur İ, Akıncıoğlu S. H. Friction-wear performance in environmentally friendly brake composites: A comparison of two different test methods. Compos. 2021;42:4461–4477. doi:10.1002/pc.26162
  • Naidu M, Bhosale A, Munde Y, et al. Tribological performance of hemp fibre reinforced phenolic composites: a brake pad material. Int. J. Surf. Sci. Eng. 2022;16:52, doi:10.1504/IJSURFSE.2022.122174
  • Kumar N, Singh T, Grewal JS, et al. Experimental investigation on the physical, mechanical and tribological properties of hemp fiber-based non-asbestos organic brake friction composites experimental investigation on the physical, mechanical and tribological properties of hemp fi ber-based. Mater. Res. Express. 2019;6:0085710, doi:10.1088/2053-1591/ab2399
  • Singh T, Kumar N, Grewal JS, et al. Natural fiber reinforced non-asbestos brake friction composites: influence of ramie fiber on physico-mechanical and tribological properties. Mater Res Express. 2019;6:115701, doi:10.1088/2053-1591/ab45a4
  • Jeganmohan S, Sugozu B, Kumar M, et al. Experimental investigation on the friction and wear characteristics of palm seed powder reinforced brake Pad friction composites. J. Inst. Eng. Ser. D. 2020;101:61–69. doi:10.1007/s40033-020-00210-9
  • Achebe C, Chukwuneke J, Anene F, et al. A retrofit for asbestos-based brake pad employing palm kernel fiber as the base filler material, proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019;233:1906–1913. doi:10.1177/1464420718796050
  • Ravikumar K, Pridhar T. Evaluation on properties and characterization of asbestos free palm kernel shell fibre (PKSF)/polymer composites for brake pads. Mater Res Express. 2019;6; doi:10.1088/2053-1591/ab502d
  • Sukrawan Y, Hamdani A, Mardani SA. Effect of bamboo weight faction on mechanical properties of non-asbestos composite of motocycle brake pad. Mater. Phys. Mech. 2019;42:367–372. doi:10.18720/MPM.4232019_12
  • Manjulaiah H, Dhanraj S, Basavegowda Y, et al. A novel study on the development of sisal-jute fiber epoxy filler–based composites for brake pad application. Biorefinery. 2023. doi:10.1007/s13399-023-04219-4
  • Ahmed MJ, Balaji MS, Saravanakumar S, et al. Characterization ofAreva javanicafiber – A possible replacement for synthetic acrylic fiber in the disc brake pad. J Ind Text. 2019;49:294–317. doi:10.1177/1528083718779446
  • Vijay R, Manoharan S, Arjun S, et al. Characterization of silane-treated and untreated natural fibers from stem of leucas aspera. J. Nat. Fibers. 2021;18:1957–1973. doi:10.1080/15440478.2019.1710651
  • Singh T, Pruncu CI, Gangil B, et al. Comparative performance assessment of pineapple and Kevlar fibers based friction composites. Integr. Med. Res. 2020;9:1491–1499. doi:10.1016/j.jmrt.2019.11.074
  • Kchaou M, Kus R, Singaravelu DL, et al. Design, characterization, and performance analysis of Miscanthus fiber reinforced composite for brake application. J. Eng. Res. 2021;9:222–234. doi:10.36909/jer.v9i3B.11151
  • Ahlawat V, Yadav U, Nain S, et al. Potential of white Ark shell powder in automotive brake friction composites. J. Mater. Eng. Perform. 2021;30:4053–4062. doi:10.1007/s11665-021-05850-w
  • Wang Z, Wang J, Ma Y. The evaluation of physicomechanical and tribological properties of corn straw fibre reinforced environment-friendly friction composites. Mater. Sci. Eng. 2019;2019:1–9. doi:10.1155/2019/1562363
  • Palai BK, Sarangi SK. Suitability evaluation of untreated and surface-modified Eichhornia crassipes fibers for brake pad applications. J. Nat. Fibers. 2022;19:5395–5408. doi:10.1080/15440478.2021.1875379
  • Maulana IT, Surojo E, Muhayat N, et al. Frictional characteristics of friction brake material using cantala fibers as reinforcement. Online. 2018;13:188–194. doi:10.2474/trol.13.188
  • Zhen-yu W, Jie W, Feng-hong C, et al. Influence of banana fiber on physicomechanical and tribological properties of phenolic based friction composites. Mater Res Express. 2019;6:0075103, doi:10.1088/2053-1591/ab160a
  • Babu LG. Influence of benzoyl chloride treatment on the tribological characteristics of cyperus pangorei fibers based non-asbestos brake friction composites. Mater Res Express. 2020;7:0015303, doi:10.1088/2053-1591/ab54f1
  • Singh T, Tiwari A, Patnaik A, et al. Influence of wollastonite shape and amount on tribo-performance of non-asbestos organic brake friction composites. Wear. 2017;157–164:157–164. doi:10.1016/j.wear.2017.06.011
  • Sai Krishnan G, Babu LG, Kumaran P, et al. Investigation of Caryota urens fibers on physical, chemical, mechanical and tribological properties for brake pad applications. Mater Res Express. 2020;7:0015310, doi:10.1088/2053-1591/ab5d5b
  • Amirjan M. Microstructure, wear and friction behavior of nanocomposite materials with natural ingredients. Tribiology Int. 2019;131:184–190. doi:10.1016/j.triboint.2018.10.040
  • Choosri S, Sombatsompop N, Wimolmala E, et al. Potential use of fly ash and bagasse ash as secondary abrasives in phenolic composites for eco-friendly brake pads applications. Inst. Mech. Eng., Part D J. Eng. Manuf. 2019;233:1296–1305. doi:10.1177/0954407018772240
  • Liu Y, Ma Y, Che J, et al. Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour. Res. Express. 2018;5:0055101, doi:10.1088/2053-1591/aac1e0
  • Seo H, Park J, Kim YC, et al. Effect of disc materials on brake emission during moderate-temperature braking. Int. 2021;163:107185, doi:10.1016/j.triboint.2021.107185
  • Blau PJ. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives, 2001. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id = 788356.
  • Ishak NM, Sivakumar D, Mansor MR, et al. Application of fuzzy vikor in automotive brake pad material. J. Mech. Eng. Technol. 2019;11:36–45.
  • Premkumar T, Siva I, Neis DP, et al. Experimental design and theoretical analysis on the various tribological responses of curauá/polyester composites. Mater Res Express. 2019;6:125337. doi:10.1088/2053-1591/ab5a0b
  • Ayodele O, Johnson A, Agunsoye O, et al. A wear rate model incorporating inflationary cost of agro-waste filled composites for brake pad applications to lower composite cost. Sci. 2021;3:1–21. doi:10.1007/s42452-020-04016-y
  • Mohammed L, Ansari MNM, Pua G, et al. A review on natural fiber reinforced polymer composite and Its applications. Int. J. Polym. Sci. 2015. doi:10.1155/2015/243947
  • Vignesh S K. An Experimental Investigation of Performance of Composite Brake Pads, glob. J. Res. Eng. A Mech. Mech. Eng. 2020;19:35–39.
  • Öktem H, Akıncıoğlu S, Uygur İ, et al. A novel study of hybrid brake pad composites: new formulation, tribological behaviour and characterisation of microstructure. Rubber Compos. 2021;50:249–261. doi:10.1080/14658011.2021.1898881
  • Antonyraj IJ, Vijay R, Singaravelu DL. Influence of WS2/SnS2 on the tribological performance of copper-free brake pads. Lubr. Tribol. 2019;71:398–405. doi:10.1108/ILT-06-2018-0249
  • Bashir M, Qayoum A, Saleem SS. Influence of lignocellulosic banana fiber on the thermal stability of brake pad material. Mater Res Express. 2019;6; doi:10.1088/2053-1591/ab37bd
  • Manoharan S, Sai Krishnan G, Babu LG, et al. Synergistic effect of red mud-iron sulfide particles on fade-recovery characteristics of non-asbestos organic brake friction composites. Mater Res Express. 2019;6:105311. doi:10.1088/2053-1591/ab366f
  • Jin H, Zhou K, Ji Z, et al. Comparative tribological behavior of friction composites containing natural graphite and expanded graphite. Friction. 2020;8:684–694. doi:10.1007/s40544-019-0293-3
  • Madeswaran A, Natarajasundaram B, Ramamoorthy B. Reformation of Eco-friendly automotive brake Pad by using natural fibre composites evaluation of developed NAO brake Pad. SAE Tech. Pap. 2016: 2016-28–2010164. doi:10.4271/2016-28-0164
  • Ilanko AK, Vijayaraghavan S. Wear behavior of asbestos-free eco-friendly composites for automobile brake materials. Friction. 2016;4:144–152. doi:10.1007/s40544-016-0111-0
  • Dharmakrishnan S, Pandian P, Sembian M. Sustainable characterization of silane treated and untreated psidium guajava stem natural fibers based automobile brake pads. J. Nat. Fibers. 2022;19:7982–7995. doi:10.1080/15440478.2021.1958429
  • Manoharan S, Vijay R, Singaravelu DL, et al. Experimental investigation on the tribo-thermal properties of brake friction materials containing various forms of graphite: A comparative study. Arab. J. Sci. Eng. 2019;44:1459–1473. doi:10.1007/s13369-018-3590-7
  • Kumar SS, Srinivasan K, Ponmariappan M, et al. Study of raw and chemically treated sansevieria ehrenbergii fibers for brake pad application. Mater Res Express. 2020;7:0055102, doi:10.1088/2053-1591/ab8f48
  • Zhao X, Ouyang J, Yang H, et al. Effect of basalt fibers for reinforcing resin-based brake composites. Minerals. 2020;10:490, doi:10.3390/min10060490
  • Akter M, Uddin MH, Anik HR. Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Bull. 2023. doi:10.1007/s00289-023-04733-5
  • Swain PTR, Biswas S. Abrasive wear behaviour of surface modified jute fiber reinforced epoxy composites. Res. 2017;20:661–674. doi:10.1590/1980-5373-MR-2016-0541
  • Ali S, Kumar N, Grewal JSG, et al. Coconut waste fiber used as brake pad reinforcement polymer composite and compared to standard Kevlar-based brake pads to produce an asbestos free brake friction material. Compos. 2022;43:1518–1525. doi:10.1002/pc.26472
  • Ghosh P, Naskar K, Das NC. Influence of synthetic graphite powder on tribological and thermo-mechanical properties of organic-inorganic hybrid fiber reinforced elastomer-modified phenolic resin friction composites. Part C Open Access. 2020;2:100018, doi:10.1016/j.jcomc.2020.100018
  • Yusubov F. Optimum design of brake friction composites. J. Tribol. 2021;30:133–148.
  • Asotah W, Adeleke A. Development of asbestos free brake pads using corn husks. Leonardo Electron. J. Pract. Technol. 2017;16(31):129–144.
  • Pujari S, Srikiran S. Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Technol. 2019;15:295–299. doi:10.1016/j.dt.2018.11.006
  • Bashir M, Qayoum A, Saleem SS. The effect of Nb2O5-Ni coatings on the microstructural and corrosion behavior on carbon steel for marine application. Bio- Tribo-Corrosion. 2021;7:1–13. doi:10.1007/s40735-020-00440-0
  • Friday GP, Bello AA, Tokan A, et al. A Physico-mechanical properties of basalt-based brake Pad as alternative to ceramics brake pad. Saudi J. Eng. Technol. 2022;7:16–33. doi:10.36348/sjet.2022.v07i01.003
  • Madnasri S, Astika G, Marwoto P. The effects of natural fiber orientations on the mechanical properties of brake composites. J. Nat. Fibers. 2022;19:2980–2991. doi:10.1080/15440478.2020.1838989
  • Girijappa T, Gowda Y, Sanjay MR, et al. Encapsulating Mo-doped TiO2 anatase in N-doped amorphous carbon With excellent lithium storage performances. comprehensive review, front. Mater. 2019;6:1–14. doi:10.3389/fmats.2019.00001
  • Vijay R, Manoharan S, Singaravelu DL. Influence of natural barytes purity levels on the tribological characteristics of non-asbestos brake pads. Lubr. Tribol. 2019;72:349–358. doi:10.1108/ILT-10-2019-0424
  • Nogueira APG, da Silva Gehlen G, Neis PD, et al. Rice husk as a natural ingredient for brake friction material: A pin-on-disc investigation. Wear. 2022;494–495:204272, doi:10.1016/j.wear.2022.204272
  • Sethupathi PB, Chandradass J. Comparative study of different solid lubricants towards friction stability in a non-asbestos disc brake pad. Lubr. Tribol. 2021;73:897–903. doi:10.1108/ILT-04-2021-0147
  • Singh T, Patnaik A, Gangil B, et al. Optimization of tribo-performance of brake friction materials: effect of nano filler. Wear. 2015;324-325:10–16. doi:10.1016/j.wear.2014.11.020
  • Chauhan V, Bijwe J, Darpe A. Functionalization of alumina particles to improve the performance of eco-friendly brake-pads. Friction. 2021;9:1213–1226. doi:10.1007/s40544-020-0461-5
  • Kchaou M, Sellami A, Fajoui J, et al. Tribological performance characterization of brake friction materials: what test? what coefficient of friction? Inst. Mech. Eng. Part J J. Eng. Tribol. 2019;233:214–226. doi:10.1177/1350650118764167
  • Kumar N, Mehta V, Kumar S, et al. Bamboo natural fiber and PAN fiber used as a reinforced brake friction material: developed asbestos-free brake pads. Compos. 2022;43:2888–2895. doi:10.1002/pc.26584
  • Gehlen GS, Neis PD, Barros LY, et al. Tribological performance of eco-friendly friction materials with rice husk. Wear. 2022;204374–501:204374, doi:10.1016/j.wear.2022.204374
  • Kosbe P, Patil P, Kulkarni R. Fade and recovery characteristics of commercial disc brake friction materials: a case study. Int J Ambient Energy. 2022;43:2446–2452. doi:10.1080/01430750.2020.1730959
  • Kalel N, Bhatt B, Darpe A, et al. Exploration of Zylon fibers with various aspect ratios to enhance the performance of eco-friendly brake-pads. Int. 2022;167:107385, doi:10.1016/j.triboint.2021.107385
  • Rajan R, Tyagi YK, Singh S. Waste and natural fiber based automotive brake composite materials: influence of slag and coir on tribological performance. Compos. 2022;43:1508–1517. doi:10.1002/pc.26471
  • Saindane UV, Soni S, Menghani JV. Friction and wear performance of brake Pad and optimization of manufacturing parameters using grey relational analysis. Int. J. Eng. Trans. C Asp. 2022;35:552–559. doi:10.5829/IJE.2022.35.03C.07
  • Sathyamoorthy G, Vijay R, Singaravelu DL. Tribological characterizations of bio-polymer based ecofriendly copper-free brake friction composites. Lubr. Tribol. 2022;74:588–596. doi:10.1108/ILT-01-2022-0011
  • Saikrishnan G, Jayakumari LS, Vijay R. Effect of graphitization percentage on fade and recovery performance of copper-free non-asbestos organic brake pads. Lubr. Tribol. 2022;74:901–909. doi:10.1108/ILT-05-2022-0152
  • Bashir M, Qayoum A, Saleem SS. Effect of banana peel powder on the fade and recovery of brake friction material. JOM. 2022;74:2705–2715. doi:10.1007/s11837-022-05223-1
  • Sugozu B, Daghan B, Akdemir A. Effect of the size on the friction characteristics of brake friction materials: a case study with Al2O3. Lubr. Tribol. 2018;70:1020–1024. doi:10.1108/ILT-02-2017-0035
  • Bernard SS, Jayakumari LS. Pressure and temperature sensitivity analysis of palm fiber as a biobased reinforcement material in brake pad. J. Brazilian Soc. Mech. Sci. Eng. 2018;40:1–12. doi:10.1007/s40430-018-1081-0
  • B. Tribological properties of brake friction materials containing fly ash. Lubr. Tribol. 2018;70:902–906. doi:10.1108/ILT-04-2017-0100
  • Pinto RLM, Gutiérrez JCH, Pereira RBD, et al. Influence of contact plateaus characteristics formed on the surface of brake friction materials in braking performance through experimental tests. Materials (Basel). 2021;14; doi:10.3390/ma14174931
  • Lee S, Jang H. Effect of plateau distribution on friction instability of brake friction materials. Wear. 2018;1–9:1–9. doi:10.1016/j.wear.2017.12.015
  • Hentati N, Makni F, Elleuch R. Braking performance of friction materials: a review of manufacturing process impact and future trends. Mater. Surfaces Interfaces. 2023: 1–22. doi:10.1080/17515831.2023.2216092
  • Balaji MS, Jitendra K, Arumugam E, et al. State of the art on challenges for friction material manufacturers – raw materials, regulations, environmental, and NVH aspects. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023;237:926–942. doi:10.1177/13506501221135071

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.