152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Traction performance modeling of worn footwear with perpendicular treads

, , & ORCID Icon
Pages 352-362 | Received 29 Jul 2022, Accepted 07 Aug 2023, Published online: 16 Aug 2023

References

  • Beschorner KE, Li Y, Yamaguchi T, et al. The future of footwear friction. Lect Notes Netw Syst. 2021;223(LNNS):841–855. doi:10.1007/978-3-030-74614-8_103
  • Bell JL, Collins JW, Wolf L, et al. Evaluation of a comprehensive slip, trip and fall prevention programme for hospital employees. Ergonomics. 2009;51:1906–1925. doi:10.1080/00140130802248092
  • Florence C, Simon T, Haegerich T, et al. Estimated lifetime medical and work-loss costs of fatal injuries — United States, 2013. MMWR Morb Mortal Wkly Rep. 2015;64:1074–1077. doi:10.15585/MMWR.MM6438A4
  • 2017 Liberty Mutual Workplace Safety Index. n.d.
  • Jones T, Iraqi A, Beschorner K. Performance testing of work shoes labeled as slip resistant. Appl Ergon. 2018;68:304–312. doi:10.1016/J.APERGO.2017.12.008
  • Iraqi A, Cham R, Redfern MS, et al. Coefficient of friction testing parameters influence the prediction of human slips. Appl Ergon. 2018;70:118–126. doi:10.1016/J.APERGO.2018.02.017
  • Gupta S, Chatterjee S, Chanda A. Effect of footwear material wear on slips and falls. Mater Today Proc. 2022;62:3508–3515. doi:10.1016/J.MATPR.2022.04.313
  • Moghaddam SRM, Acharya A, Redfern MS, et al. Predictive multiscale computational model of shoe-floor coefficient of friction. J Biomech. 2018;66:145–152. doi:10.1016/J.JBIOMECH.2017.11.009
  • Chanda A, Jones TG, Beschorner KE. Generalizability of footwear traction performance across flooring and contaminant conditions. IISE Trans Occup Ergon Hum Factors. 2018;6:98–108. doi:10.1080/24725838.2018.1517702
  • Jakobsen L, Lysdal FG, Bagehorn T, et al. The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles. Ergonomics. 2022;66:1–8. doi:10.1080/00140139.2022.2081364
  • Beschorner KE, Siegel JL, Hemler SL, et al. An observational ergonomic tool for assessing the worn condition of slip-resistant shoes. Appl Ergon. 2020;88:103140. doi:10.1016/J.APERGO.2020.103140
  • Beschorner KE, Meehan EE, Iraqi A, et al. Designing shoe tread for friction performance: a hierarchical approach. Footwear Sci. 2021;13:S97–S99. doi:10.1080/19424280.2021.1917701
  • Strobel CM, Menezes PL, Lovell MR, et al. Analysis of the contribution of adhesion and hysteresis to shoe-floor lubricated friction in the boundary lubrication regime. Tribol Lett. 2012;47:341–347. doi:10.1007/S11249-012-9989-5/TABLES/2
  • Gupta S, Chatterjee S, Malviya A, et al. Traction performance of common formal footwear on slippery surfaces. Surfaces. 2022;5:489–503. doi:10.3390/SURFACES5040035
  • Li KW, Chen CJ. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl Ergon. 2004;35:499–507. doi:10.1016/J.APERGO.2004.06.010
  • Yamaguchi T, Katsurashima Y, Hokkirigawa K. Effect of rubber block height and orientation on the coefficients of friction against smooth steel surface lubricated with glycerol solution. Tribol Int. 2017;110:96–102. doi:10.1016/J.TRIBOINT.2017.02.015
  • Hemler SL, Charbonneau DN, Beschorner KE. Predicting hydrodynamic conditions under worn shoes using the tapered-wedge solution of reynolds equation. Tribol Int. 2020;145:106161. doi:10.1016/J.TRIBOINT.2020.106161
  • Hemler SL, Charbonneau DN, Iraqi A, et al. Changes in under-shoe traction and fluid drainage for progressively worn shoe tread. Appl Ergon. 2019;80:35–42. doi:10.1016/J.APERGO.2019.04.014
  • Meehan EE, Vidic N, Beschorner KE. In contrast to slip-resistant shoes, fluid drainage capacity explains friction performance across shoes that are not slip-resistant. Appl Ergon. 2022;100:103663. doi:10.1016/J.APERGO.2021.103663
  • Blanchette MG, Powers CM. The influence of footwear tread groove parameters on available friction. Appl Ergon. 2015;50:237–241. doi:10.1016/J.APERGO.2015.03.018
  • Hale J, Lewis R, Carré MJ. Effect of simulated tennis steps and slides on tread element friction and wear. Sport Eng. 2021;24:1–9. doi:10.1007/S12283-021-00343-4/FIGURES/9
  • Goff JE, Boswell L, Ura D, et al. Critical shoe contact area ratio for sliding on a tennis hard court. Proc Inst Mech Eng Part P J Sport Eng Technol. 2018;232:112–121. doi:10.1177/1754337117715341/ASSET/IMAGES/LARGE/10.1177_1754337117715341-FIG14.JPEG
  • Chang W-R, Grönqvist R, Leclercq S, et al. The role of friction in the measurement of slipperiness, part 1: friction mechanisms and definition of test conditions the role of friction in the measurement of slipperiness, part 1: friction mechanisms and de®nition of test conditions. Ergonomics. 2001;44:1217–1232. doi:10.1080/00140130110085574
  • Moghaddam SRM, Hemler SL, Redfern MS, et al. Computational model of shoe wear progression: comparison with experimental results. Wear. 2019;422–423:235–241. doi:10.1016/J.WEAR.2019.01.070
  • Kim IJ, Smith R, Nagata H. Microscopic observations of the progressive wear on shoe surfaces that affect the slip resistance characteristics. Int J Ind Ergon. 2001;28:17–29. doi:10.1016/S0169-8141(01)00010-5
  • Cook A, Hemler S, Sundaram V, et al. Differences in friction performance between new and worn shoes. IISE Trans Occup Ergon Hum Factors. 2021;8:209–214. doi:10.1080/24725838.2021.1925998
  • Hemler SL, Pliner EM, Redfern MS, et al. Effects of natural shoe wear on traction performance: a longitudinal study. Footwear Sci. 2021;14:1–12. doi:10.1080/19424280.2021.1994022
  • Albert D, Moyer B, Beschorner KE. Three-Dimensional shoe kinematics during unexpected slips: implications for shoe–floor friction testing. IISE Trans Occup Ergon Hum Factors. 2016;5:1–11. doi:10.1080/21577323.2016.1241963
  • Beschorner KE, Albert DL, Chambers AJ, et al. Fluid pressures at the shoe–floor–contaminant interface during slips: effects of tread & implications on slip severity. J Biomech. 2014;47:458–463. doi:10.1016/J.JBIOMECH.2013.10.046
  • Chang WR, Leclercq S, Lockhart TE, et al. State of science: occupational slips, trips and falls on the same level*. Ergonomics. 2016;59:861–883. doi:10.1080/00140139.2016.1157214
  • Standard test method for measuring the coefficient of friction for evaluation of slip performance of footwear and test surfaces/flooring using a whole shoe tester n.d.
  • Gupta S, Sidhu SS, Chatterjee S, et al. Effect of floor coatings on slip-resistance of safety shoes. Coatings. 2022;12:1455. doi:10.3390/COATINGS12101455
  • Gupta S, Malviya A, Chatterjee S, et al. Development of a portable device for surface traction characterization at the shoe-floor interface. Surfaces. 2022;5:504–520. doi:10.3390/SURFACES5040036
  • Gupta S, Chatterjee S, Malviya A, et al. Frictional assessment of low-cost shoes in worn conditions across workplaces. J Bio- Tribo-Corrosion. 2023;9:1–13. doi:10.1007/S40735-023-00741-0/FIGURES/12
  • Beschorner KE, Iraqi A, Redfern MS, et al. Predicting slips based on the STM 603 whole-footwear tribometer under different coefficient of friction testing conditions. Ergonomics. 2019;62:668–681. doi:10.1080/00140139.2019.1567828
  • Iraqi A, Beschorner KE. Vertical ground reaction forces during unexpected human slips. Proc Hum Factors Ergon Soc. 2017;2017-Octob:924–928. doi:10.1177/1541931213601713
  • Kanyanta V, Ivankovic A. Mechanical characterisation of polyurethane elastomer for biomedical applications. J Mech Behav Biomed Mater. 2010;3:51–62. doi:10.1016/J.JMBBM.2009.03.005
  • Papagiannis P, Azariadis P, Papanikos P. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm. IOP Conf Ser Mater Sci Eng. 2017;254:162010. doi:10.1088/1757-899X/254/16/162010
  • Rodrigues PV, Ramoa B, Machado AV, et al. Assessing the compressive and impact behavior of plastic safety toe caps through computational modelling. Polymers (Basel). 2021;13:4332. doi:10.3390/POLYM13244332
  • Chhikara K, Gupta S, Chanda A. Development of a novel foot orthosis for plantar pain reduction. Mater Today Proc. 2022;62:3532–3537. doi:10.1016/J.MATPR.2022.04.361
  • Gupta S, Gupta V, Chanda A. Biomechanical modeling of novel high expansion auxetic skin grafts. Int J Numer Method Biomed Eng. 2022;38. doi:10.1002/CNM.3586
  • Gupta S, Singh G, Chanda A. Prediction of diabetic foot ulcer progression: a computational study. Biomed Phys Eng Express. 2021;7:065020. doi:10.1088/2057-1976/AC29F3
  • Singh G, Gupta S, Chanda A. Biomechanical modelling of diabetic foot ulcers: a computational study. J Biomech. 2021;127:110699. doi:10.1016/J.JBIOMECH.2021.110699
  • Iraqi A, Vidic NS, Redfern MS, et al. Prediction of coefficient of friction based on footwear outsole features. Appl Ergon. 2020;82:102963. doi:10.1016/J.APERGO.2019.102963

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.