314
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tribological aspects of magnesium matrix composites: a review of recent experimental studies

Pages 363-396 | Received 20 Mar 2023, Accepted 07 Aug 2023, Published online: 20 Aug 2023

References

  • Zandalinas SI, Fritschi FB, Mittler R. Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci. 2021;26(6):588–599. doi:10.1016/j.tplants.2021.02.011
  • Letcher TM. Global warming-a complex situation. In: Letcher TM, editor. Climate change. Amsterdam: Elsevier; 2021. p. 3–17.
  • Masood Chaudry U, Tekumalla S, Gupta M, et al. Designing highly ductile magnesium alloys: current status and future challenges. Crit Rev Solid State Mater Sci. 2022;47(2):194–281. doi:10.1080/10408436.2021.1947185
  • Nie KB, Wang XJ, Deng KK, et al. Magnesium matrix composite reinforced by nanoparticles–a review. J Magnes Alloy. 2021;9(1):57–77. doi:10.1016/j.jma.2020.08.018
  • Song J, Chen J, Xiong X, et al. Research advances of magnesium and magnesium alloys worldwide in 2021. J Magnes Alloy. 2022;10(4):863–898. doi:10.1016/j.jma.2022.04.001
  • Lin X, Saijilafu, Wu X, et al. Biodegradable Mg-based alloys: biological implications and restorative opportunities. Int Mater Rev. 2022;68(4):365–403.
  • Dudina DV, Georgarakis K, Olevsky EA. Progress in aluminium and magnesium matrix composites obtained by spark plasma, microwave and induction sintering. Int Mater Rev. 2022;68(2):225–246.
  • Srinivasan V, Kunjiappan S, Palanisamy P. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int Nano Lett. 2021;11(4):321–345. doi:10.1007/s40089-021-00328-y
  • Kumar D, Jain J, Gosvami NN. Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol Lett. 2022;70(1):1–29. doi:10.1007/s11249-021-01537-4
  • Demir B, Koç E, Saud AN. Effect of weld currents on microstructure, corrosion behavior of AZ31 magnesium alloy. J Bio- Tribo-Corros. 2021;7(2):1–8. doi:10.1007/s40735-021-00489-5
  • Aydin F, Durgut R. Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methods. Trans Nonferr Metal Soc China. 2021;31(1):125–137. doi:10.1016/S1003-6326(20)65482-6
  • Olugbade TO, Omiyale BO, Ojo OT. Corrosion, corrosion fatigue, and protection of magnesium alloys: mechanisms, measurements, and mitigation. J Mater Eng Perform. 2022;31(3):1707–1727. doi:10.1007/s11665-021-06355-2
  • An J, Li RG, Lu Y, et al. Dry sliding wear behavior of magnesium alloys. Wear. 2008;265(1-2):97–104. doi:10.1016/j.wear.2007.08.021
  • Banerjee S, Sahoo P, Davim JP. Tribological characterisation of magnesium matrix nanocomposites: a review. Adv Mec Eng. 2021;13(4):168781402110090. doi:10.1177/16878140211009025
  • Hussein RO, Northwood DO. Improving the performance of magnesium alloys for automotive applications. WIT Trans Built Environ. 2014;1:531–544. doi:10.2495/HPSM140491
  • Liu J, Yu H, Chen C, et al. Research and development status of laser cladding on magnesium alloys: a review. Opt Lasers Eng. 2017;93:195–210. doi:10.1016/j.optlaseng.2017.02.007
  • Fattah-alhosseini A, Chaharmahali R. Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: a review. FlatChem. 2021;27:100241. doi:10.1016/j.flatc.2021.100241
  • Meher A, Mahapatra MM, Samal P, et al. A review on manufacturability of magnesium matrix composites: processing, tribology, joining, and machining. CIRP J Manuf Sci Technol. 2022;39:134–158. doi:10.1016/j.cirpj.2022.07.012
  • Ogawa F, Masuda C. Fabrication and the mechanical and physical properties of nanocarbon-reinforced light metal matrix composites: a review and future directions. Mater Sci Eng A. 2021;820:141542. doi:10.1016/j.msea.2021.141542
  • Kumar D, Phanden RK, Thakur L. A review on environment friendly and lightweight magnesium-based metal matrix composites and alloys. Mater Today Proc. 2021;38:359–364. doi:10.1016/j.matpr.2020.07.424
  • Nirala A, Soren S, Kumar N, et al. Comprehensive study of magnesium based metal matrix composite. Mater Today Proc. 2021;46:6587–6591. doi:10.1016/j.matpr.2021.04.062
  • Song X, Bayati P, Gupta M, et al. Fracture of magnesium matrix nanocomposites-a review. Int J Lightweight Mater Manuf. 2021;4(1):67–98. doi:10.1016/j.ijlmm.2020.07.002
  • Chawla N, Chawla KK. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J Mater Sci. 2006;41(3):913–925. doi:10.1007/s10853-006-6572-1
  • Chen L, Yao Y. Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metallurgica Sinica. 2014;27:762–774. doi:10.1007/s40195-014-0161-0
  • Singh N, Belokar RM. Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: a state-of-art review. Mater Today Proc. 2021;44:460–466. doi:10.1016/j.matpr.2020.09.757
  • Aydin F. Effect of solid waste materials on properties of magnesium matrix composites – a systematic review 2022. J Magnes Alloys 2022;10:2673–2698. doi:10.1016/j.jma.2022.09.005
  • Khatkar SK. Hybrid magnesium matrix composites: a review of reinforcement philosophies, mechanical and tribological characteristics. Rev Adv Mater Sci. 2023;62(1):20220294. doi:10.1515/rams-2022-0294
  • Dash D, Samanta S, Rai RN. Study on fabrication of magnesium based metal matrix composites and its improvement in mechanical and tribological properties-a review. Sikkim; IOP Conference Series: Materials Science and Engineering (Vol. 377, No. 1). IOP Publishing; 2018, Jun. p. 012133.
  • Rohatgi PK, Tabandeh-Khorshid M, Omrani E, et al. Tribology of metal matrix composites. In: Menezes P, Nosonovsky M, Ingole S, et al., editors. Tribology for scientists and engineers. New York (NY): Springer; 2013. p. 233–268.
  • Moghadam AD, Omrani E, Menezes PL, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B: Eng. 2015;77:402–420. doi:10.1016/j.compositesb.2015.03.014
  • Zhai W, Bai L, Zhou R, et al. Recent progress on wear-resistant materials: designs, properties, and applications. Adv Sci. 2021;8(11):2003739. doi:10.1002/advs.202003739
  • Samal P, Vundavilli PR, Meher A, et al. Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process. 2020;59:131–152. doi:10.1016/j.jmapro.2020.09.010
  • Carter CB, Norton MG. Ceramic materials. New York (NY): Springer; 2013. doi:10.1007/978-1-4614-3523-5
  • Rahaman MN. Ceramic processing. Boca Raton: CRC Press; 2017.
  • Torrisi L, Cutroneo M, Torrisi A, et al. Measurements on five characterizing properties of graphene oxide and reduced graphene oxide foils. Phys Status Solidi (A). 2022;219(6):2100628. doi:10.1002/pssa.202100628
  • Turan ME, Aydin F. Improved elevated temperature mechanical properties of graphene-reinforced pure aluminium matrix composites. Mater Sci Technol. 2020;36(10):1092–1103. doi:10.1080/02670836.2020.1753933
  • Los JH, Zakharchenko KV, Katsnelson MI, et al. Melting temperature of graphene. Phys Rev B. 2015;91(4):045415. doi:10.1103/PhysRevB.91.045415
  • Demirdal S, Aydın F. The influence of low-cost eggshell on the wear and electrochemical corrosion behaviour of novel pure Mg matrix composites. Mater Chem Phys. 2022;277:125520. doi:10.1016/j.matchemphys.2021.125520
  • Ravichandran M, Veerappan G, Dhinakaran V, et al. Optimization of tribo-mechanical properties of boron carbide reinforced magnesium metal matrix composite. Proc Inst Mech Eng, Part J: J Eng Tribol. 2022;236(9):1814–1826. doi:10.1177/13506501211030070
  • Chen J, Li K, Dong P, et al. Mechanical and tribological characterisation of AlCoCuFeNi HEA reinforced magnesium composites prepared via spark plasma sintering. Proc Inst Mech Eng, Part L: J Mater: Design Appl. 2022;236(10):2074–2084.
  • Simsir H, Akgul Y. Using a new sustainable carbon reinforcement in magnesium matrix composites. Mater Chem Phys. 2022;281:125886. doi:10.1016/j.matchemphys.2022.125886
  • Olalekan ON, Abdul Samad M, Hassan SF, et al. Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribol-Mater Surf Interfaces. 2022;16(2):110–118. doi:10.1080/17515831.2021.1898898
  • Khosravi M, Emamy M, Ra’ayatpour M, et al. Improving the mechanical and wear properties of Mg-Mg2Si in-situ composite via hybrid SiCp and hot working. Silicon. 2022;15:533–546.
  • Titarmare VP, Banerjee S, Sahoo P. Dry sliding tribological behavior of ultrasonic stir cast AZ31-B4C composites. Proc Inst Mech Eng, Part J: J Eng Tribol. 2022;237(4):824–842.
  • Shen M, Zhu X, Han B, et al. Dry sliding wear behaviour of AZ31 magnesium alloy strengthened by nanoscale SiCp. J Mater Res Technol. 2022;16:814–823. doi:10.1016/j.jmrt.2021.12.048
  • Babu N, Megalingam A. Microstructural, mechanical and tribological characterization of ZrB2 reinforced AZ31B surface coatings made by friction stir processing. J Adhes Sci Technol. 2022;37(2):195–212.
  • Banerjee S, Sutradhar G, Sahoo P. Effect of incorporation of graphite nanoparticles on wear characteristics of Mg-WC nano-composites in dry sliding condition. Trans IMF. 2022;101(1):29–39.
  • Subramani M, Huang SJ, Borodianskiy K. Effect of SiC nanoparticles on AZ31 magnesium alloy. Materials. 2022;15(3):1004. doi:10.3390/ma15031004
  • Subramani M, Huang SJ, Borodianskiy K. Effect of WS2 nanotubes on the mechanical and wear behaviors of AZ31 stir casted magnesium metal matrix composites. J Compos Sci. 2022;6(7):182. doi:10.3390/jcs6070182
  • Mahesha CR, Deshmukh RG, Sunagar P, et al. Experimental analysis on tribological characteristics of AZ60A/Gr/BN magnesium composites. J Nanomater. 2022;2022.
  • Kushwah R, Jayan MS, Kanagasabapathy H, et al. The impact of boron nitride (BN) on tribological behaviour of AZ84 magnesium matrix composites. Mater Today Proc. 2022;59:1271–1276. doi:10.1016/j.matpr.2021.11.502
  • Kumar D, Thakur L. A study of development and sliding wear behavior of AZ91D/Al2O3 composites fabricated by ultrasonic-assisted stir casting. Arab J Sci Eng. 2022;47:1–17. doi:10.1007/s13369-021-06049-w
  • Arreola-Fernández C, Lemus-Ruiz J, Jiménez-Alemán O, et al. Wear behavior of AZ91E/AlN metal matrix composites. Mater Lett. 2022;317:132080. doi:10.1016/j.matlet.2022.132080
  • Bharathi ML, Rag SA, Chitra L, et al. Investigation on wear characteristics of AZ91D/nanoalumina composites. J Nanomater. 2022;2022:1–9.
  • Kumar A, Kumar S, Mukhopadhyay NK, et al. Effect of TiC reinforcement on mechanical and wear properties of AZ91 matrix composites. Int J Metalcast. 2022;16:2128–2143.
  • Aatthisugan I, Murugesan R, Rao TVVLN. Influence of boron carbide content on dry sliding wear performances of AZ91D magnesium alloy. Proc Inst Mech Eng, Part J: J Eng Tribol. 2022;237(4):746–756.
  • Singh S, Chauhan NR. Optimization of adhesive wear behaviour of B4C/AZ91D-Mg composites. Adv Mater Process Technol. 2022;8(4):4058–4072.
  • Aatthisugan I, Murugesan R. Optimization of wear and friction behaviour of AZ91D–B4C−Gr hybrid composite under dry sliding conditions. Proc Inst Mech Eng, Part J: J Eng Tribol. 2022;237(4):775–783.
  • Turan ME, Aydin F. Wear and corrosion properties of low-cost eggshell-reinforced green AZ91 matrix composites. Can Metall Q. 2022;61(2):155–171. doi:10.1080/00084433.2022.2035634
  • Zhao R, Zhao Z, Bai P, et al. Research on tribological behavior of graphene with in-situ MgO nanoparticles reinforced AZ91 alloy composite. Compos Commun. 2022;30:101086. doi:10.1016/j.coco.2022.101086
  • Chen S, Wang M, Sun L, et al. Characterization of (B4C+ Ti) Hybrid Reinforced Mg and AZ91D composites. Crystals. 2022;12(8):1105. doi:10.3390/cryst12081105
  • Guan ZP, LI MY, Xia KX, et al. Microstructure, mechanical properties and wear resistance of SiCp/AZ91 composite prepared by vacuum pressure infiltration. Trans Nonferrous Metals Soc China. 2022;32(1):104–121. doi:10.1016/S1003-6326(21)65781-3
  • Yellapragada NVSR, Cherukuri TS, Jayaraman P. Mechanical and tribological studies on AZ91E magnesium alloy reinforced with lanthanum hexa-aluminate nanoparticles. Arab J Sci Eng. 2022;47:15989–16000.
  • Ataya S, El-Sayed Seleman MM, Latief FH, et al. Wear characteristics of Mg alloy AZ91 reinforced with oriented short carbon Fibers. Materials. 2022;15(14):4841. doi:10.3390/ma15144841
  • Meher A, Mahapatra MM, Samal P, et al. Modeling the abrasive wear behavior of in-situ synthesized magnesium RZ5/TiB2 metal matrix composites. Proc Inst Mech Eng, Part E: J Process Mech Eng. 2022;236(4):1500–1510. doi:10.1177/09544089211065532
  • Banijamali SM, Najafi S, Sheikhani A, et al. Dry tribological behavior of hot-rolled WE43 magnesium matrix composites reinforced by B4C particles. Wear. 2022;204487.
  • Balaji E, Sathiya Moorthy R. Investigation on mechanical and wear properties of ZE43 magnesium composites reinforced with silicon nitride by friction stir processing. Silicon. 2022;14:11881–11890.
  • Behnamian Y, Serate D, Aghaie E, et al. Tribological behavior of ZK60 magnesium matrix composite reinforced by hybrid MWCNTs/B4C prepared by stir casting method. Tribol Int. 2022;165:107299. doi:10.1016/j.triboint.2021.107299
  • Su J, Teng J, Xu Z, et al. Corrosion-wear behavior of a biocompatible magnesium matrix composite in simulated body fluid. Friction. 2022;10(1):31–43. doi:10.1007/s40544-020-0361-8
  • Pasha MB, Sharma RC, Rao RN, et al. Sliding wear characteristics of Mg/Si3N4 nanocomposites at room and elevated temperatures. Mater Lett. 2022;329:133186.
  • Mustu M, Demir B, Aydin F. An investigation of mechanical and wear performance of TiB2/GNPs-reinforced ZK60 Mg matrix composites fabricated Via powder metallurgy. J Mater Eng Perform. 2023;32:3527–3541. doi:10.1007/s11665-022-07382-3
  • Zhou MY, Ren LB, Fan LL, et al. Achieving ultrahigh strength and good ductility in AZ61 alloy composites containing hybrid micron SiC and carbon nanotubes reinforcements. Mater Sci Eng, A. 2019;768:138447. doi:10.1016/j.msea.2019.138447
  • Yuan Q-h, Qiu Z-q, Zhou G-h, et al. Interfacial design and strengthening mechanisms of AZ91 alloy reinforced with in-situ reduced graphene oxide. Mater Char. 2018;138:215–228. doi:10.1016/j.matchar.2018.02.011
  • Deuis RL, Subramanian C, Yellup JM. Abrasive wear of aluminium composites—a review. Wear. 1996;201(1-2):132–144. doi:10.1016/S0043-1648(96)07228-6
  • Murray JW, Ahmed N, Yuzawa T, et al. Dry-sliding wear and hardness of thick electrical discharge coatings and laser clads. Tribol Int. 2020;150:106392. doi:10.1016/j.triboint.2020.106392
  • Ye J, Chen X, Luo H, et al. Microstructure, mechanical properties and wear resistance of Ti particles reinforced AZ31 magnesium matrix composites. J Magnes Alloys. 2022;10(8):2266–2279.
  • Fahad M, Bavanish B. Tribological behavior of AZ91D magnesium alloy composite: effect of hybrid WC–SiO2 nanoparticles. Ind Lubrication Tribol. 2021;73(5):789–795.
  • Aydin F, Sun Y. Microstructure and wear of a sintered composite with a magnesium alloy AZ91 matrix reinforced with ZrO2 particles. Met Sci Heat Treat. 2019;61(5):325–329. doi:10.1007/s11041-019-00424-z
  • Aydin F, Sun Y. Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can Metall Q. 2018;57(4):455–469. doi:10.1080/00084433.2018.1478491
  • Parande G, Manakari V, Kopparthy SDS, et al. Utilizing low-cost eggshell particles to enhance the mechanical response of Mg–2.5 Zn magnesium alloy matrix. Adv Eng Mater. 2018;20(5):1700919.
  • Aydin F, Sun Y, Ahlatci H, et al. Investigation of microstructure, mechanical and wear behaviour of B4C particulate reinforced magnesium matrix composites by powder metallurgy. Trans Indian Inst Met. 2018;71(4):873–882. doi:10.1007/s12666-017-1219-2
  • Aydin F. The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Adv Powder Technol. 2021;32(2):445–463. doi:10.1016/j.apt.2020.12.024
  • Tayebi M, Tayebi M, Rajaee M, et al. Improvement of thermal properties of Al/Cu/SiC composites by tailoring the reinforcement microstructure and comparison to thermoelastic models. J Alloy Compd. 2021;853:156794. doi:10.1016/j.jallcom.2020.156794
  • Anand N. Development and influence of tribomechanical properties on magnesium based hybrid metal matrix composites – a review. Mater Res Express. 2020;7(3):036520. doi:10.1088/2053-1591/ab7d08
  • Anandajothi M, Vinod B. Tribological behavior of magnesium hybrid composite: effect of amorphous silica-solid waste reinforcement particles to reduce material cost. Silicon. 2020;14:47–64.
  • Mallikarjuna HM, Ramesh CS, Koppad PG, et al. Effect of carbon nanotube and silicon carbide on microstructure and dry sliding wear behavior of copper hybrid nanocomposites. Trans Nonferrous Metals Soc China. 2016;26(12):3170–3182. doi:10.1016/S1003-6326(16)64449-7
  • Turan ME, Sun Y, Aydın F, et al. Influence of multi-wall carbon nanotube content on dry and corrosive wear performances of pure magnesium. J Compos Mater. 2018;52:3127–3135. doi:10.1177/0021998318762294
  • Antonio Dorini F, Sampaio R. Some results on the random wear coefficient of the Archard model. J Appl Mech. 2012;79(5):051008.
  • Aydın F. Investigation of elevated temperature wear behavior of Al 2024-BN composites using statistical techniques. J Mater Eng Perform. 2021;30(11):8560–8578. doi:10.1007/s11665-021-06011-9
  • Khatkar SK, Verma R, Kharb SS, et al. Optimization and effect of reinforcements on the sliding wear behavior of self-lubricating AZ91D-SiC-Gr hybrid composites. Silicon. 2021;13(5):1461–1473. doi:10.1007/s12633-020-00523-0
  • Abbas A, Huang SJ, Ballokova B, et al. Tribological effects of carbon nanotubes on magnesium alloy AZ31 and analyzing aging effects on CNTs/AZ31 composites fabricated by stir casting process. Tribol Int. 2020;142:105982. doi:10.1016/j.triboint.2019.105982
  • Moheimani SK, Keshtgar A, Khademzadeh S, et al. Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. J Magnes Alloys. 2021;10(11):3267–3280.
  • Aydin F, Turan ME. The effect of boron nitride on tribological behavior of Mg matrix composite at room and elevated temperatures. J Tribol. 2020;142(1):011601.
  • Banerjee S, Poria S, Sutradhar G, et al. Dry sliding tribological behavior of AZ31-WC nano-composites. J Magnes Alloys. 2019;7:315–327. doi:10.1016/j.jma.2018.11.005
  • Xie Z, Guo F, Huang X, et al. Understanding the anti-wear mechanism of SiCp/WE43 magnesium matrix composite. Vacuum. 2020;172:109049. doi:10.1016/j.vacuum.2019.109049
  • Thirugnanasambandham T, Chandradass J, Kannan TTM. Influence of load and sliding speed on wear behavior of AZ91E magnesium alloy nanocomposite by dry sliding. Mater Today Proc. 2021;45:6553–6557. doi:10.1016/j.matpr.2020.11.459
  • Zhang J, Alpas AT. Transition between mild and severe wear in aluminium alloys. Acta Mater. 1997;45(2):513–528. doi:10.1016/S1359-6454(96)00191-7
  • Yang XY, Hutchinson CR. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. ActaBiomater. (2016)];42:429–439.
  • Torres H, Varga M, Adam K, et al. The role of load on wear mechanisms in high temperature sliding contacts. Wear. 2016;364–365:73–83. doi:10.1016/j.wear.2016.06.025
  • Pasha MB, Rao RN, Ismail S, et al. Microstructure, Mechanical and ignition characteristics of Si3N4 reinforced magnesium matrix nanocomposites. Appl Sci. 2022;12:6138.
  • Labib F, Ghasemi HM, Mahmudi R. Dry tribological behavior of Mg/SiCp composites at room and elevated temperatures. Wear. 2016;348–349:69–79.
  • Walczak M, Pieniak D, Zwierzchowski M. The tribological characteristics of SiC particle reinforced aluminium composites. Archiv Civ Mech Eng. 2015;15:116–123. doi:10.1016/j.acme.2014.05.003
  • Straffelini G. Friction BT - friction and wear: methodologies for design and control. In: G Straffelini, Cham: Springer International Publishing; 2015. p. 21–60.
  • Aydin F, Durgut R, Mustu M, et al. Prediction of wear performance of ZK60/CeO2 composites using machine learning models. Tribol Int. 2022;107945.
  • Banijamali SM, Shariat Razavi M, Palizdar Y, et al. Experimental and simulation study on wear behavior of ZK60 alloy with 3 wt.% yttrium addition. J Mater Eng Perform. 2022;31:4721–4734.
  • Zhou M, Qu X, Ren L, et al. The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials. 2017;10(12):1385. doi:10.3390/ma10121385
  • Reinert L, Green I, Gimmler S, et al. Tribological behavior of self-lubricating carbon nanoparticle reinforced metal matrix composites. Wear. 2018;408–409:72–85.
  • Kumar GN, Narayanasamy R, Natarajan S, et al. Dry sliding wear behaviour of AA 6351-ZrB2 in situ composite at room temperature. Mater Des. 2010;31(3):1526–1532. doi:10.1016/j.matdes.2009.09.017
  • Prasad A, Jain J, Gosvami NN. Effect of minor La addition on wear behaviour of Mg-10Dy alloy. Wear. 2021;486:204121. doi:10.1016/j.wear.2021.204121
  • Kara İH. Wear behavior of Hot rolled AZ31B and AZ31B-Nd-La Mg alloys tested at different angles to rolling direction. J Mater Eng Perform. 2022;31:4925–4933.
  • Aydin F, Sun Y, Turan ME. Investigation of microstructure, mechanical and wear behaviour of B4C particulate reinforced AZ91 matrix composites by powder metallurgy. Ind J Chem Technol. 2019;26:351–354.
  • Mazaheri Y, Jalilvand MM, Heidarpour A, et al. Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing. Tribol Int. 2020;143:106062. doi:10.1016/j.triboint.2019.106062
  • Zarghami M, Emamy M, Malekan M. Microstructure, mechanical properties and wear behaviour of the AZ91–Mg2Si–SiC hybrid composites. Mater Sci Technol. 2021;37(16):1333–1341. doi:10.1080/02670836.2021.2006908
  • Wu L, Wu R, Hou L, et al. Microstructure, mechanical properties and wear performance of AZ31 matrix composites reinforced by graphene nanoplatelets (GNPs). J Alloys Compd. 2018;750:530–536. doi:10.1016/j.jallcom.2018.04.035
  • Sun Y, Cevik E, Turen Y, et al. Influence of GNPs and B4C reinforcements on mechanical, thermal and wear properties of magnesium matrix composite produced by powder metallurgy. J Compos Mater. 2021;55(26):3881–3891. doi:10.1177/00219983211031641
  • García-Rodríguez S, Torres B, Maroto A, et al. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp composites. Wear. 2017;390:1–10. doi:10.1016/j.wear.2017.06.010
  • Turan ME, Aydin F, Sun Y, et al. Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting. Tribol Int. 2021;164:107201. doi:10.1016/j.triboint.2021.107201
  • Suresh R. Comparative study on dry sliding wear behavior of mono (Al2219/B4C) and hybrid (Al2219/B4C/Gr) metal matrix composites using statistical technique. J Mech Behav Mater. 2020;29(1):57–68. doi:10.1515/jmbm-2020-0006
  • Monikandan VV, Rajendrakumar PK, Joseph MA. High temperature tribological behaviors of aluminum matrix composites reinforced with solid lubricant particles. Trans Nonferrous Met Soc China. 2020;30:1195–1210. doi:10.1016/S1003-6326(20)65289-X
  • Duan Y, Qu S, Jia S, et al. Evolution of wear damage in gross sliding fretting of a nitrided high-carbon high-chromium steel. Wear. 2021;464:203548. doi:10.1016/j.wear.2020.203548
  • Cevik E, Gundogan M. Dry sliding wear behavior of (GNPs+ TiB2)-reinforced AZ91 magnesium matrix hybrid composites produced by pressure infiltration casting method. Int J Metalcast. 2021;15(4):1250–1259. doi:10.1007/s40962-020-00552-w
  • Erdil M, Aydın F. Influence of graphene particles on the wear and corrosion performance of MAO produced AZ31 alloy. Fuller Nanotube Carbon Nanostruct. 2021;29(12):998–1008. doi:10.1080/1536383X.2021.1925252
  • Rahmani K, Majzoobi GH, Ebrahim-Zadeh G, et al. Comprehensive study on quasi-static and dynamic mechanical properties and wear behavior of Mg—B4C composite compacted at several loading rates through powder metallurgy. Trans Nonferrous Metals Soc China. 2021;31(2):371–381. doi:10.1016/S1003-6326(21)65502-4
  • Banijamali SM, Palizdar Y, Nekouee KA, et al. Effect of B4 C reinforcement and hot rolling on microstructure and mechanical properties of WE43 magnesium matrix composite. Proc Inst Mech Eng Part L J Mater Des Appl. 2022;236(9):1854–1868.
  • Suresh S, Elango N, Venkatesan K, et al. Sustainable friction stir spot welding of 6061-T6 aluminium alloy using improved nondominated sorting teaching learning algorithm. J Mater Res Technol. 2020;9:11650–11674. doi:10.1016/j.jmrt.2020.08.043
  • Prakash KS, Balasundar P, Nagaraja S, et al. Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J Magnes Alloys. 2016;4(3):197–206. doi:10.1016/j.jma.2016.08.001
  • Hong S, Ma Q, Liu G, et al. In-situ reinforced phase evolution and wear resistance of nickel-based composite coatings fabricated by wide-band laser cladding with Nb addition. Opt Laser Technol. 2023;157:108678. doi:10.1016/j.optlastec.2022.108678
  • Raju GU, Meti VKV, Banapurmath NR, et al. Effect of multi-walled carbon nanotubes and carbon fiber reinforcements on the mechanical and tribological behavior of hybrid Mg-AZ91D nanocomposites. Materials. 2022;15(17):6181. doi:10.3390/ma15176181
  • Aydin F, Sun Y, Emre Turan M. The effect of TiB2 content on wear and mechanical behavior of AZ91 magnesium matrix composites produced by powder metallurgy. Powder Metall Met Ceram. 2019;57(9):564–572. doi:10.1007/s11106-019-00016-9
  • Aghajani S, Pouyafar V, Meshkabadi R. Wear behavior of high volume Al2O3-reinforced Al7075 matrix composites fabricated by semi-solid powder processing. Proc Inst Mech Eng, Part E: J Process Mech Eng. 2022;09544089221104449.
  • Ataya S, Alsaleh NA, El-Sayed Seleman MM. Strength and wear behavior of Mg alloy AE42 reinforced with carbon short fibers. Acta Metall Sinica. 2019;32(1):31–40. doi:10.1007/s40195-018-0771-z
  • Daoud A. Wear performance of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration. Mater Lett. 2004;58:3206–3213. doi:10.1016/j.matlet.2004.06.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.