140
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sliding wear behaviour of austempered ductile iron, boron steel and AISI 1045 steel of similar hardness: effect of microstructure, yield strength, and strain hardening

, , &
Pages 397-411 | Received 21 Apr 2023, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • Wang BL, Morris DS, Farshid S, et al. Rolling contact fatigue study of chilled and quenched/tempered ductile iron compared with AISI 1080 steel. Wear. 2021;478–479:203890, doi:10.1016/j.wear.2021.203890
  • Brandenberg KR, Hayrynen KL. Agricultural applications of austempered ductile iron. Proc. 2002 World Conf: ADI; 2002.
  • Keough JR, Hayrynen KL, Popovski VM. Continuing developments in the science and application of austempered ductile iron (ADI). Monterrey, Mexico.: World Foundry Congr; 2012.
  • Voigt RC, Eldoky LM, Chiou HS. Fracture of ductile cast irons with dual matrix structures. Trans Am Foundrymen’s Soc. 1986;94:645–656.
  • Aranzabal J, Serramoglia G, Goria CA, et al. Development of a new mixed (ferritic-ausferritic) ductile iron for automotive suspension parts. Int J Cast Met Res ISSN. 2003;16:185–190. doi:10.1080/13640461.2003.11819580
  • Kilicli V, Erdogan M. Tensile properties of partially austenitised and austempered ductile irons with dual matrix structures. Mater Sci Technol. 2006;22:919–928. doi:10.1179/174328406X102390
  • Kilicli V, Erdogan M. The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure. J Mater Eng Perform. 2010;19:142–149. doi:10.1007/s11665-009-9386-x
  • Deeley P, Kunding K, Spendelow H. Ferroalloys & alloying additives handbook, shieldalloy corp. Newfield (NJ): Metallurg Alloy Corp; 1981.
  • Bhakat AK, Mishra AK, Mishra NS. Characterization of wear and metallurgical properties for development of agricultural grade steel suitable in specific soil conditions. Wear. 2007;263:228–233. doi:10.1016/j.wear.2006.12.006
  • Hardell J, Yousfi A, Lund M, et al. Abrasive wear behaviour of hardened high strength boron steel. Mater Surfaces Interfaces 2014;8:90–97. doi:10.1179/1751584X14Y.0000000068
  • Bialobrzeska B, Kostencki P. Abrasive wear characteristics of selected low-alloy boron steels as measured in both field experiments and laboratory tests. Wear. 2015;149–159:149–159. doi:10.1016/J.WEAR.2015.02.003
  • Ahmadi I. A draught force estimator for disc harrow using the laws of classical soil mechanics. Biosyst Eng. 2018;171:52–62. doi:10.1016/j.biosystemseng.2018.04.008
  • Batra U, Batra N, Sharma JD. Wear performance of Cu-alloyed austempered ductile iron. J Mater Eng Perform. 2013;22:1136–1142. doi:10.1007/s11665-012-0380-3
  • Zambrano OA, Gómez JA, Coronado JJ. The sliding wear behaviour of steels with the same hardness. Wear. 2019;201–207:201–207. doi:10.1016/J.WEAR.2018.12.002
  • Bandstra JP, Koss DA. A simulation of growth and coalescence of voids during ductile fracture. Sci Eng A Complete. 2004: 399–403. doi:10.1016/j.msea.2004.02.092
  • Du Y, Wang X, Zhang D, et al. A superior strength and sliding-wear resistance combination of ductile iron with nanobainitic matrix. J Mater Res Technol. 2021;11:1175–1183. doi:10.1016/j.jmrt.2021.01.104
  • Batra U, Singh M, Sharma SK. Effect of austempering temperature on microstructure and tribological behaviour of hypoeutectic austempered ductile iron alloyed with copper. Mater Surfac Interfac. 2022. doi:10.1080/17515831.2022.2105990
  • Hernandez S, Hardell J, Courbon C, et al. High temperature friction and wear mechanism map for tool steel and boron steel tribopair. Tribol – Mater Surfac Interfac. 2014;8; doi:10.1179/1751584X13Y.0000000049
  • Zdravecká E, Tkáčová J, Ondáč M. Effect of microstructure factors on abrasion resistance of high-strength steels. Agric Eng. 2014;60:115–120. doi:10.17221/20/2013-RAE
  • Lin H, Chang-Jun Z. An investigation of the role of secondary carbide in martensitic steel during three-body abrasion wear. Wear. 1994;176:103–109. doi:10.1016/0043-1648(94)90203-8
  • Bourithis L, Papadimitriou G. Three body abrasion wear of low carbon steel modified surfaces. Wear. 2005;258:1775–1786. doi:10.1016/j.wear.2004.12.013
  • Stachowiak GB, Stachowiak GW. The effects of particle characteristics on three-body abrasive wear. Wear. 2001;249:201–207. doi:10.1016/S0043-1648(01)00557-9
  • Axén N, Jacobson S, Hogmark S. Influence of hardness of the counterbody in three-body abrasive wear — an overlooked hardness effect. Tribol Int. 1994;27:233–241. doi:10.1016/0301-679X(94)90003-5
  • Fang L, Zhou QD, Li YJ. An explanation of the relation between wear and material hardness in three-body abrasion. Wear. 1991;151:313–321. doi:10.1016/0043-1648(91)90258-V
  • Gates JD. Two-body and three-body abrasion: a critical discussion. Wear. 1998;214:139–146. doi:10.1016/S0043-1648(97)00188-9
  • Hrabě P, Müller M, Hadač V. Evaluation of techniques for ploughshare lifetime increase. Agric Eng. 2015;61:72–79. doi:10.17221/73/2013-RAE
  • Natsis A, Papadakis G, Pitsilis J. The influence of soil type, soil water and share sharpness of a mouldboard plough on energy consumption, rate of work and tillage quality. J Agric Eng Res. 1999;72:171–176. doi:10.1006/jaer.1998.0360
  • wei Yi D, pu Shi Y, guang Fu H, et al. Microstructures and erosion-corrosion behavior of Fe-B alloy containing chromium and nickel. China Foundry. 2019;16:307–312. doi:10.1007/s41230-019-9007-8
  • Daber S, Rao PP. Formation of strain-induced martensite in austempered ductile iron. J Mater Sci. 2008;43:357–367. doi:10.1007/s10853-007-2258-6
  • Li X, Soria S, Gan W, et al. Multi-scale phase analyses of strain-induced martensite in austempered ductile iron (ADI) using neutron diffraction and transmission techniques. J Mater Sci. 2021;56:5296–5306. doi:10.1007/s10853-020-05619-x
  • Tarassov SY, Kolubaev AV. Effect of friction on subsurface layer microstructure in austenitic and martensitic steels. Wear. 1999;231:228–234. doi:10.1016/S0043-1648(99)00107-6
  • Yuan CQ, Peng Z, Zhou XC, et al. The characterization of wear transitions in sliding wear process contaminated with silica and iron powder. Tribol Int. 2005;38:129–143. doi:10.1016/J.TRIBOINT.2004.06.007
  • De Oliveira MM, Costa HL, Silva WM, et al. Effect of iron oxide debris on the reciprocating sliding wear of tool steels. Wear. 2019;1065–1075:1065–1075. doi:10.1016/j.wear.2018.12.047
  • Singh J, Alpas AT. Dry sliding wear mechanisms in a Ti50Ni47Fe3 intermetallic alloy. Wear. 1995;302–311:302–311. doi:10.1016/0043-1648(95)90037-3
  • Gopinath K, Rayudu GVN, Narayanamurthi RG. Friction and wear of sintered iron. Wear. 1977;42:245–250. doi:10.1016/0043-1648(77)90055-2
  • Leheup ER, Deen Z, Moon JR. The effect of density on fretting wear of sintered iron. Wear. 1994;176:111–119. doi:10.1016/0043-1648(94)90204-6
  • Papaphilippou C, Vardavoulias M, Jeandin M. The influence of humidity and the role of debris in the unlubricated wear of ductile cast iron against alumina. Wear. 1994;177:151–157. doi:10.1016/0043-1648(94)90240-2
  • Hurricks PL. The mechanism of fretting — a review. Wear. 1970;15:389–409. doi:10.1016/0043-1648(70)90235-8
  • Hardell J, Hernandez S, Mozgovoy S, et al. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures. Wear. 2015;223–229:223–229. doi:10.1016/j.wear.2015.02.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.