1,418
Views
0
CrossRef citations to date
0
Altmetric
Research Note

Response of Antarctic sea-ice algae to an experimental decrease in pH: a preliminary analysis from chlorophyll fluorescence imaging of melting ice

ORCID Icon, ORCID Icon, , ORCID Icon, &

References

  • Arrigo K.R. & Sullivan C.W. 1992. The influence of salinity and temperature covariation on the photophysiological characteristics of Antarctic sea ice microalgae. Journal of Phycology 28, 746–8.
  • Arrigo K.R. & Thomas D.N. 2004. Large scale importance of sea ice biology in the Southern Ocean. Antarctic Science 16, 471–486.
  • Bach L.T., Riebesell U., Gutowska M.A., Federwisch L. & Schulz K.G. 2015. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography 135, 125–138.
  • Baker N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59, 89–113.
  • Bates N.R., Garley R., Frey K.E., Shake K.L. & Mathis J.T. 2014. Sea–ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air–sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice. Biogeosciences 11, 6769–6789.
  • Beardall J. & Raven J.A. 2004. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43, 26–40.
  • Coad T., Nomura D., McMinn A. & Martin A. 2016. Effect of elevated CO2 concentration on the photophysiology and growth of microalgae in Antarctic pack ice communities. Deep-Sea Research Part II Topical Studies in Oceanography 131, 160–169.
  • Doney S.C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516.
  • Fabry V.J., Seibel B.A., Feely R.A. & Orr J.C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. Journal of Marine Science 65, 414–432.
  • Fransson A., Chierici M., Nomura D., Granskog M.A., Kristiansen S., Martma T. & Nehrke G. 2015. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. Journal of Geophysical Research—Oceans 120, 2413–2429.
  • Hare A.A., Wang F., Barber D., Geilfus N.-X., Galley R.J. & Rysgaard S. 2013. pH evolution in sea ice grown at an outdoor experimental facility. Marine Chemistry 154, 46–54.
  • Hawes I., Lund-Hansen L.C., Sorrell B.K., Nielson M.H., Borzák R. & Buss I. 2012. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, west Greenland: insights from imaging variable chlorophyll fluorescence of ice cores. Photosynthesis Research 112, 103–115.
  • Kapsenberg L., Kelley A.L., Shaw E.C., Martz T.R. & Hofmann G.E. 2015. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments. Scientific Reports 5, article no. 10497, doi: 10.1038/srep10497.
  • Kennedy F., McMinn A. & Martin A. 2012. Effect of temperature and sea ice on the photosynthetic efficiency and morphotype of Phaeocystis antarctica. Journal of Experimental Marine Biology and Ecology 429, 7–14.
  • Kranz S.A., Young J.N., Hopkinson B., Goldman J.A.L., Tortell P.D. & Morel F.M.M. 2015. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. The New Phytologist 205, 192–201.
  • Kühl M., Glud R.N., Borum J., Roberts R. & Rysgaard S. 2001. Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and O2 microsensors. Marine Ecology Progress Series 223, 1–14.
  • Lewis E. & Wallace D.W.R. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.
  • Lund-Hansen L.C., Hawes I., Sorrell B.K. & Nielsen M.H. 2014. Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioural effects. Polar Biology 37, 471–481.
  • Martin A., Anderson M.J., Thorn C., Davy S.K. & Ryan K.G. 2011. Response of sea-ice microbial communities to environmental disturbance: an in situ transplant experiment in the Antarctic. Marine Ecology Progress Series 424, 25–37.
  • Martin A., McMinn A., Heath M., Hegseth E. & Ryan K.G. 2012. The physiological response to increased temperature in over-wintering sea ice algae and phytoplankton in McMurdo Sound, Antarctica and Tromsø Sound, Norway. Journal of Experimental Marine Biology and Ecology 428, 57–66.
  • McMinn A., Ashworth C., Bhagooli R., Martin A., Salleh S., Ralph P. & Ryan K.G. 2012. Antarctic coastal microalgal primary production and photosynthesis. Marine Biology 159, 2827–2837.
  • McMinn A., Martin A. & Ryan K.G. 2010. Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Polar Biology 33, 1547–1556.
  • McMinn A., Müller M.N., Martin A. & Ryan K.G. 2014. The response of Antarctic sea ice algae to changes in pH and CO2. PLoS One 9, e86984, doi: 10.1371/journal.pone.0086984.
  • McMinn A., Müller M.N., Martin A., Ugalde S.C., Lee S., Castrisios K. & Ryan K.G. 2017. Effects of CO2 concentration on a late summer surface sea ice community. Marine Biology 164, article no. 87, doi: 10.1007/s00227-017-3102-4.
  • McMinn A., Pankowski A. & Delfatti T. 2005. Effect of hyperoxia on the growth and photosynthesis of polar sea ice microalgae. Journal of Phycology 41, 732–741.
  • McMinn A., Ryan K.G. & Gademann R. 2003. Diurnal changes in photosynthesis of Antarctic fast ice algal communities determined by pulse amplitude modulation fluorometry. Marine Biology 143, 359–367.
  • Mock T. & Kroon B.M. 2002. In situ primary production in young Antarctic sea ice. Hydrobiology 470, 127–132.
  • Mock T. & Thomas D.N. 2005. Recent advances in sea-ice microbiology. Environmental Microbiology 7, 605–619.
  • Müller M.N., Trull T.W. & Hallegraeff G.M. 2015. Differing response of three Southern Ocean Emiliania huxleyi ecotypes to changing seawater carbonate chemistry. Marine Ecology Progress Series 531, 81–90.
  • Palmisano A.C. & Sullivan C.W. 1983. Sea-ice microbial communities (SIMCO). I. Polar Biology 2, 171–177.
  • Rajanahally M.A., Sim D., Ryan K.G. & Convey P. 2014. Can bottom ice algae tolerate irradiance and temperature changes? Journal of Experimental Marine Biology and Ecology 461, 516–527.
  • Ralph P.J. & Gademan R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82, 222–237.
  • Ralph P.J., McMinn A., Ryan K.G. & Ashworth C. 2005. Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pace ice. Journal of Phycology 41, 763–769.
  • Ralph P.J., Ryan K.G., Martin A. & Fenton G. 2007. Melting out of sea ice causes greater photosynthetic stress in sea ice algae than freezing in. Journal of Phycology 43, 948–956.
  • Raven J.A., Giordano M., Beardall J. & Maberly S.C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109, 281–296.
  • Reinfelder J.R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science 3, 291–315.
  • Riebesell U., Wolf-Gladrow D.A. & Smetacek V. 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251.
  • Roy R.N., Roy L.N., Vogel K.M., Porter-Moore C., Pearson T., Good C., Millero F.J. & Campbell D.M. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44, 249–267.
  • Ryan K.G., Cowie R., Liggins E., McNaughtan D., Martin A. & Davy S.K. 2009. The short-term effect of irradiance on the photosynthetic properties of Antarctic fast-ice microalgal communities. Journal of Phycology 45, 1290–1298.
  • Ryan K.G., McMinn A., Hegseth E. & Davy S.K. 2012. The effects of ultraviolet-B radiation on Antarctic sea-ice algae. Journal of Phycology 48, 74–84.
  • Ryan K.G., Ralph P.J. & McMinn A. 2004. Photoacclimation of Antarctic bottom ice algal communities to lowered salinities during melting. Polar Biology 27, 679–686.
  • Ryan K.G., Tay M.L., Martin A., McMinn A. & Davy S.K. 2011. Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. Journal of Experimental Marine Biology and Ecology 399, 156–161.
  • Rysgaard S., Bendtsen J., Delille B., Dieckmann G.S., Glud R., Kennedy H., Mortensen J., Papadimitriou S., Thomas D.N. & Tison J.-L. 2011. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus Series B Chemical and Physical Meteorology 63, 823–830.
  • Schreiber U. 2004. Pulse-amplitude-modulated (PAM) fluorometry and saturation pulse method: an overview. In G.C. Papageorgiou & Govindjee (eds.): Chlorophyll a fluorescence: a signature of photosynthesis. Pp. 279–319. Dordrecht: Springer.
  • Suffrian K., Schulz K.G., Gutowska M.A., Riebesell U. & Bleich M. 2011. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability. New Phytologist 190, 595–608.
  • Thomas D.N. & Dieckmann G.S. 2002. Biogeochemistry of Antarctic sea ice. In R.N. Gibson et al. (eds.): Oceanography and marine biology: an annual review. Vol. 40. Pp. 143–169. Boca Raton, FL: CRC Press.
  • Thomas D.N. & Papadimitriou S. 2003. Biogeochemistry of sea ice. In D.N. Thomas & G.S. Dieckmann (eds.): Sea ice – an introduction to its physics, biology and geology. Pp. 267–302. Oxford: Blackwell Publishing.
  • Torstensson A., Chierici M. & Wulff A. 2012. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa. Polar Biology 35, 205–214.
  • Trenerry L.J., McMinn A. & Ryan K.G. 2002. In situ oxygen microelectrode measurements of bottom-ice algal production in McMurdo Sound, Antarctica. Polar Biology 25, 72–80.
  • Trimborn S., Brenneis T., Sweet E. & Rost B. 2013. Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interaction. Limnology and Oceanography 58, 997–1007.
  • Ugalde S., Martin A., Meiners K.M., McMinn A. & Ryan K.G. 2014. Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica). Aquatic Microbial Ecology 73, 195–210.
  • Young J.N., Kranz S.A., Goldman J.A.L., Tortell P.D. & Morel F.M.M. 2015. Antarctic phytoplankton down-regulate their carbon-concentrating mechanisms under high CO2 with no change in growth rates. Marine Ecology Progress Series 532, 13–28.