822
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Shrub-induced snowpack variability alters wintertime soil respiration across a simulated tundra landscape

ORCID Icon

References

  • Baptist F., Yoccoz N.G. & Choler P. 2010. Direct and indirect control by snow cover over decomposit ion in alpine tundra along a snowmelt gradient. Plant and Soil 328, 397–6.
  • Benson C.S. & Sturm M. 1993. Structure and wind transport of seasonal snow on the Arctic slope of Alaska. Annals of Glaciology 18, 261–267.
  • Bintanja R. & Selten F.M. 2014. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479.
  • Blok D., Elberling B. & Michelsen A. 2016. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19, 155–169.
  • Bueno C.G., Williamson S.N., Barrio I.C., Helgadóttir Á. & Hik D.S. 2016. Moss mediates the influence of shrub species on soil properties and processes in alpine tundra. PLoS One 11, e0164143, doi: 10.1371/journal.pone.0164143.
  • Christie K.S., Bryant J.P., Gough L., Ravolainen V.T., Ruess R.W. & Tape K.D. 2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. BioScience 65, 1123–1133.
  • Essery R. & Pomeroy J. 2004. Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. Journal of Hydrometeorology 5, 735–744.
  • Fahnestock J.T., Jones M.H. & Welker J.M. 1999. Wintertime CO2 efflux from Arctic soils: implications for annual carbon budgets. Global Biogeochemical Cycles 13, 775–779.
  • Ge Y. & Gong G. 2010. Land surface insulation response to snow depth variability. Journal of Geophysical Research—Atmospheres 115, article no. 08107, doi: 10.1029/2009JD012798.
  • Grogan P. & Jonasson S. 2006. Ecosystem CO2 production during winter in a Swedish Subarctic region: the relative importance of climate and vegetation type. Global Change Biology 12, 1479–1495.
  • Hallinger M., Manthey M. & Wilmking M. 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186, 890–899.
  • Hobbie S.E. & Chapin F.S. III. 1996. Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35, 327–338.
  • Hugelius G., Strauss J., Zubrzycki S., Harden J.W., Schuur E., Ping C.L., Schirrmeister L., Grosse G., Michaelson G.J., Koven C.D. & O’Donnell J.A. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593.
  • Liston G.E., Mcfadden J.P., Sturm M. & Pielke R.A. 2002. Modelled changes in Arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biology 8, 17–32.
  • McLaren J.R., Buckeridge K.M., Weg M.J., Shaver G.R., Schimel J.P. & Gough L. 2017. Shrub encroachment in Arctic tundra: Betula nana effects on above‐ and belowground litter decomposition. Ecology 98, 1361–1376.
  • Mikan C.J., Schimel J.P. & Doyle A.P. 2002. Temperature controls of microbial respiration in Arctic tundra soils above and below freezing. Soil Biology and Biochemistry 34, 1785–1795.
  • Morgner E., Elberling B., Strebel D. & Cooper E.J. 2010. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Research 29, 58–74.
  • Myers-Smith I.H., Forbes B.C., Wilmking M., Hallinger M., Lantz T., Blok D., Tape K.D., Macias-Fauria M., Sass-Klaassen U., Lévesque E. & Boudreau S. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6, 045509, doi: 10.1088/1748-9326/6/4/045509.
  • Myers‐Smith I.H. & Hik D.S. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecology and Evolution 3, 3683–3700.
  • Natali S.M., Schuur E.A. & Rubin R.L. 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology 100, 488–498.
  • Nauta A.L., Heijmans M.M., Blok D., Limpens J., Elberling B., Gallagher A., Li B., Petrov R.E., Maximov T.C., Van Huissteden J. & Berendse F. 2015. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change 5, 67–70.
  • Nobrega S. & Grogan P. 2007. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems 10, 419–431.
  • Oechel W.C., Laskowski C.A., Burba G., Gioli B. & Kalhori A.A. 2014. Annual patterns and budget of CO2 flux in an Arctic tussock tundra ecosystem. Journal of Geophysical Research—Biogeosciences 119, 323–339.
  • Paradis M., Lévesque E. & Boudreau S. 2016. Greater effect of increasing shrub height on winter versus summer soil temperature. Environmental Research Letters 11, 085005, doi: 10.1088/1748-9326/11/8/085005.
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rastetter E.B. 2017. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221.
  • Rogers M.C., Sullivan P.F. & Welker J.M. 2011. Evidence of nonlinearity in the response of net ecosystem CO2 exchange to increasing levels of winter snow depth in the High Arctic of northwest Greenland. Arctic, Antarctic, and Alpine Research 43, 95–106.
  • Schimel J.P., Bilbrough C. & Welker J.M. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry 36, 217–227.
  • Stieglitz M., Ducharne A., Koster R. & Suarez M. 2001. The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. Journal of Hydrometeorology 2, 228–242.
  • Stuefer S.L., Homan J.W., Youcha E.K., Kane D.L. & Gieck R.E. 2012. Snow survey data for the central north slope watersheds: spring 2012. Report INE/WERC 12.22. Fairbanks, AK: Water and Environmental Research Center, University of Alaska Fairbanks.
  • Sturm M., Holmgren J., McFadden J.P., Liston G.E., Chapin F.S. III & Racine C.H. 2001. Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. Journal of Climate 14, 336–344.
  • Sturm M., Schimel J., Michaelson G., Welker J.M., Oberbauer S.F., Liston G.E., Fahnestock J. & Romanovsky V.E. 2005. Winter biological processes could help convert Arctic tundra to shrubland. AIBS Bulletin 55, 17–26.
  • Tape K., Sturm M. & Racine C. 2006. The evidence for shrub expansion in northern Alaska and the Pan‐Arctic. Global Change Biology 12, 686–702.
  • Taras B., Sturm M. & Liston G.E. 2002. Snow–ground interface temperatures in the Kuparuk River Basin, Arctic Alaska: measurements and model. Journal of Hydrometeorology 3, 377–394.
  • Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G. & Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23, GB2023, doi: 10.1029/2008GB003327.
  • Walker D.A., Raynolds M.K., Daniëls F.J., Einarsson E., Elvebakk A., Gould W.A., Katenin A.E., Kholod S.S., Markon C.J., Melnikov E.S. & Moskalenko N.G. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16, 267–282.
  • Walker M.D., Walker D.A., Welker J.M., Arft A.M., Bardsley T., Brooks P.D., Fahnestock J.T., Jones M.H., Losleben M., Parsons A.N. & Seastedt T.R. 1999. Long-term experimental manipulation of winter snow regime and summer temperature in Arctic and alpine tundra. Hydrological Processes 13, 2315–2330.
  • Zhang T. 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics 43, RG4002, doi: 10.1029/2004RG000157.
  • Zhang W., Miller P.A., Smith B., Wania R., Koenigk T. & Döscher R. 2013. Tundra shrubification and tree-line advance amplify Arctic climate warming: results from an individual-based dynamic vegetation model. Environmental Research Letters 8, 034023, doi: 10.1088/1748-9326/8/3/034023.