937
Views
0
CrossRef citations to date
0
Altmetric
Research Notes

Sediments of MIS 5e age suggested by new OSL dates from the Skilvika section, west Svalbard

ORCID Icon &

References

  • Alexanderson H., Backman J., Cronin T.M., Funder S., Ingólfsson Ó., Jakobsson M., Landvik J.Y., Löwemark L., Mangerud J., März C., Möller P., O’Regan M. & Spielhagen R.F. 2014. An Arctic perspective on dating Mid-Late Pleistocene environmental history. Quaternary Science Reviews 92, 9–6.
  • Alexanderson H., Henriksen M., Ryen H.T., Landvik J.Y. & Peterson G. 2018. 200 ka of glacial events in NW Svalbard: an emergence cycle facies model and regional correlations. Arktos 4(3), doi: 10.1007/s41063-018-0037-z.
  • Alexanderson H., Ingólfsson Ó., Murray A.S. & Dudek J. 2013. An interglacial polar bear and an early Weichselian glaciation at Poolepynten, western Svalbard. Boreas 42, 532–543.
  • Alexanderson H., Landvik J.Y. & Ryen H.T. 2011. Chronology and styles of glaciation in an inter-fjord setting, northwestern Svalbard. Boreas 40, 175–197.
  • Arnold L.J. & Roberts R.G. 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204–230.
  • Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360.
  • Duller G.A.T. 2008. Single-grain optical dating of quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589–612.
  • Fuchs M. & Owen L.A. 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37, 636–659.
  • Fuchs M., Straub J. & Zöller L. 2005. Residual luminescence signals of recent river flood sediments: a comparison between quartz and feldspar of fine- and coarse-grain sediments. Ancient TL 23, 25–30.
  • Guérin G., Christophe C., Philippe A., Murray A.S., Thomsen K.J., Tribolo C., Urbanova P., Jain M., Guibert P., Mercier N., Kreutzer S. & Lahaye C. 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the average dose model. Quaternary Geochronology 41, 163–173.
  • Landvik J.Y., Alexanderson H., Henriksen M. & Ingólfsson Ó. 2014. Landscape imprints of changing glacial regimes during ice sheet build-up and decay: a conceptual model from Svalbard. Quaternary Science Reviews 92, 258–268.
  • Landvik J.Y., Bolstad M., Lycke A.K., Mangerud J. & Sejrup H.P. 1992. Weichselian stratigraphy and palaeoenvironments at Bellsund, western Svalbard. Boreas 21, 335–358.
  • Lycke A.K., Mangerud J. & Sejrup H.P. 1992. Late quaternary foraminiferal stratigraphy from western Svalbard. Boreas 21, 271–288.
  • Mangerud J., Bondevik S., Gulliksen S., Hufthammer A.K. & Høisæter T. 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the north Atlantic. Quaternary Science Reviews 25, 3228–3245.
  • Mangerud J., Dokken T., Hebbeln D., Heggen B., Ingólfsson Ó., Landvik J.Y., Mejdahl V., Svendsen J.I. & Vorren T.O. 1998. Fluctuations of the Svalbard–Barents Sea ice sheet during the last 150 000 years. Quaternary Science Reviews 17, 11–42.
  • Murray A.S. & Funder S. 2003. Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit: a test of accuracy. Quaternary Science Reviews 22, 1177–1183.
  • Murray A.S., Marten R., Johnson A. & Martin P. 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry Articles 115, 263–288.
  • Murray A.S., Wintle A. & Wallinga J. 2002. Dose estimation using quartz OSL in the non-linear region of the growth curve. Radiation Protection Dosimetry 101, 371–374.
  • Murray A.S. & Wintle A.G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73.
  • Murray A.S. & Wintle A.G. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377–381.
  • Prescott J.R. & Hutton J.T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497–500.
  • Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. & Van Der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887.
  • Tabachnick B.G. & Fidell L.S. 1996. Using multivariate statistics. New York: HarperCollins College Publishers
  • Thrasher I.M., Mauz B., Chiverrell R.C. & Lang A. 2009. Luminescence dating of glaciofluvial deposits: a review. Earth-Science Reviews 97, 145–158.
  • Wallinga J. 2002. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21, 17–26.