537
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preliminary simulation of spatial distribution patterns of soil thermal conductivity in permafrost of the Arctic

ORCID Icon, , , , , , ORCID Icon, , , , , , , & show all
Pages 4512-4532 | Received 04 Aug 2023, Accepted 17 Oct 2023, Published online: 31 Oct 2023

References

  • Al-Shammary, A. A. G., A. Caballero-Calvo, H. A. Jebur, M. Ismael Khalbas, and J. Fernández-Gálvez. 2022. “A Novel Heat-Pulse Probe for Measuring Soil Thermal Conductivity: Field Test Under Different Tillage Practices.” Computers and Electronics in Agriculture 202: 107414. https://doi.org/10.1016/j.compag.2022.107414.
  • Alrtimi, A., M. Rouainia, and S. Haigh. 2016. “Thermal Conductivity of a Sandy Soil.” Applied Thermal Engineering 106: 551–560. https://doi.org/10.1016/j.applthermaleng.2016.06.012.
  • Bachmann, J., R. Horton, and R. R. Van der Ploeg. 2001. “Isothermal and Nonisothermal Evaporation from Four Sandy Soils of Different Water Repellency.” Soil Science Society of America Journal 65 (6): 1599–1607. https://doi.org/10.2136/sssaj2001.1599.
  • Barrere, Mathieu, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse. 2017. “Evaluating the Performance of Coupled Snow–Soil Models in SURFEXv8 to Simulate the Permafrost Thermal Regime at a High Arctic Site.” Geoscientific Model Development 10 (9): 3461–3479. https://doi.org/10.5194/gmd-10-3461-2017.
  • Barry-Macaulay, D., A. Bouazza, B. Wang, and R. M. Singh. 2015. “Evaluation of Soil Thermal Conductivity Models.” Canadian Geotechnical Journal 52 (11): 1892–1900. https://doi.org/10.1139/cgj-2014-0518.
  • Bayat, H., G. Ebrahimzadeh, and B. P. Mohanty. 2021. “Investigating the Capability of Estimating Soil Thermal Conductivity Using Topographical Attributes for the Southern Great Plains, USA.” Soil and Tillage Research 206: 104811. https://doi.org/10.1016/j.still.2020.104811.
  • Bowen, J. C., C. P. Ward, G. W. Kling, and R. M. Cory. 2020. “Arctic Amplification of Global Warming Strengthened by Sunlight Oxidation of Permafrost Carbon to CO2.” Geophysical Research Letters 47 (12): e2020GL087085. https://doi.org/10.1029/2020GL087085.
  • Bristow, K. L. 1998. “Measurement of Thermal Properties and Water Content of Unsaturated Sandy Soil Using Dual-Probe Heat-Pulse Probes.” Agricultural and Forest Meteorology 89 (2): 75–84. https://doi.org/10.1016/S0168-1923(97)00065-8.
  • Campbell, G. S., J. D. Jungbauer, W. R. Bidlake, and R. D. Hungerford. 1994. “Predicting the Effect of Temperature on Soil Thermal Conductivity.” Soil Science 158 (5): 307–313. https://doi.org/10.1097/00010694-199411000-00001.
  • Chen, S. X. 2008. “Thermal Conductivity of Sands.” Heat and Mass Transfer 44 (10): 1241–1246. https://doi.org/10.1007/s00231-007-0357-1.
  • Chen, YingYing, Kun Yang, WenJun Tang, Jun Qin, and Long Zhao. 2012. “Parameterizing Soil Organic Carbon’s Impacts on Soil Porosity and Thermal Parameters for Eastern Tibet Grasslands.” Science China Earth Sciences 55 (6): 1001–1011. https://doi.org/10.1007/s11430-012-4433-0.
  • Chylek, Petr, Chris Folland, James D. Klett, Muyin Wang, Nick Hengartner, Glen Lesins, and Manvendra K. Dubey. 2022. “Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models.” Geophysical Research Letters 49 (13): e2022GL099371. https://doi.org/10.1029/2022GL099371.
  • Côté, J., and J. M. Konrad. 2005. “A Generalized Thermal Conductivity Model for Soils and Construction Materials.” Canadian Geotechnical Journal 42 (2): 443–458. https://doi.org/10.1139/t04-106.
  • Cuntz, M., and V. Haverd. 2018. “Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme.” Journal of Advances in Modeling Earth Systems 10 (1): 54–77. https://doi.org/10.1002/2017MS001100.
  • Dai, Yongjiu, Nan Wei, Hua Yuan, Shupeng Zhang, Wei Shangguan, Shaofeng Liu, Xingjie Lu, and Yufei Xin. 2019. “Evaluation of Soil Thermal Conductivity Schemes for use in Land Surface Modeling.” Journal of Advances in Modeling Earth Systems 11 (11): 3454–3473. https://doi.org/10.1029/2019MS001723.
  • Davy, R., and S. Outten. 2020. “The Arctic Surface Climate in CMIP6: Status and Developments Since CMIP5.” Journal of Climate 33 (18): 8047–8068. https://doi.org/10.1175/JCLI-D-19-0990.1.
  • De Vries, Daniel A. 1963. Thermal properties of soils. Physics of plant environment, 210-235.
  • Domine, F., M. Barrere, and S. Morin. 2016. “The Growth of Shrubs on High Arctic Tundra at Bylot Island: Impact on Snow Physical Properties and Permafrost Thermal Regime.” Biogeosciences (online) 13 (23): 6471–6486. https://doi.org/10.5194/bg-13-6471-2016.
  • Domine, Florent, Georg Lackner, Denis Sarrazin, Mathilde Poirier, and Maria Belke-Brea. 2021. “Meteorological, Snow and Soil Data (2013–2019) from a Herb Tundra Permafrost Site at Bylot Island, Canadian High Arctic, for Driving and Testing Snow and Land Surface Models.” Earth System Science Data 13 (9): 4331–4348. https://doi.org/10.5194/essd-13-4331-2021.
  • Du, Yizhen, Ren Li, Tonghua Wu, Chengsong Yang, Lin Zhao, Guojie Hu, Yao Xiao, et al. 2022. “A new Model for Predicting Soil Thermal Conductivity for dry Soils.” International Journal of Thermal Sciences 176: 107487. https://doi.org/10.1016/j.ijthermalsci.2022.107487.
  • Duarte, Efraín, Erick Zagal, Juan A. Barrera, Francis Dube, Fabio Casco, and Alexander J. Hernández. 2022. “Digital Mapping of Soil Organic Carbon Stocks in the Forest Lands of Dominican Republic.” European Journal of Remote Sensing 55 (1): 213–231. https://doi.org/10.1080/22797254.2022.2045226.
  • Farouki, O. T. 1981. “The Thermal Properties of Soils in Cold Regions.” Cold Regions Science and Technology 5 (1): 67–75. https://doi.org/10.1016/0165-232X(81)90041-0.
  • Fei, W., G. A. Narsilio, and M. M. Disfani. 2021. “Predicting Effective Thermal Conductivity in Sands Using an Artificial Neural Network with Multiscale Microstructural Parameters.” International Journal of Heat and Mass Transfer 170: 120997. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120997.
  • Go, Gyu-Hyun, Seung-Rae Lee, Young-Sang Kim, Hyun-Ku Park, and Seok Yoon. 2014. “A new Thermal Conductivity Estimation Model for Weathered Granite Soils in Korea.” Geomechanics and Engineering 6 (4): 359–376. https://doi.org/10.12989/gae.2014.6.4.359.
  • Gori, F., and S. Corasaniti. 2013. “New Model to Evaluate the Effective Thermal Conductivity of Three-Phase Soils.” International Communications in Heat and Mass Transfer 47: 1–6. https://doi.org/10.1016/j.icheatmasstransfer.2013.07.004.
  • Guo, D., and J. Sun. 2015. “Permafrost Thaw and Associated Settlement Hazard Onset Timing Over the Qinghai-Tibet Engineering Corridor.” International Journal of Disaster Risk Science 6: 347–358. https://doi.org/10.1007/s13753-015-0072-3.
  • He, Hailong, Gerald N. Flerchinger, Yuki Kojima, Dong He, Stuart P. Hardegree, Miles F. Dyck, Robert Horton, et al. 2021. “Evaluation of 14 Frozen Soil Thermal Conductivity Models with Observations and SHAW Model Simulations.” Geoderma 403: 115207. https://doi.org/10.1016/j.geoderma.2021.115207.
  • He, Hailong, Dong He, Jiming Jin, Kathleen M. Smits, Miles Dyck, Qingbai Wu, Bingcheng Si, and Jialong Lv. 2020. “Room for Improvement: A Review and Evaluation of 24 Soil Thermal Conductivity Parameterization Schemes Commonly Used in Land-Surface, Hydrological, and Soil-Vegetation-Atmosphere Transfer Models.” Earth-Science Reviews 211: 103419. https://doi.org/10.1016/j.earscirev.2020.103419.
  • Hiraiwa, Y., and T. Kasubuchi. 2000. “Temperature Dependence of Thermal Conductivity of Soil Over a Wide Range of Temperature (5-75°C).” European Journal of Soil Science 51 (2): 211–218. https://doi.org/10.1046/j.1365-2389.2000.00301.x.
  • Hjort, Jan, Dmitry Streletskiy, Guy Doré, Qingbai Wu, Kevin Bjella, and Miska Luoto. 2022. “Impacts of Permafrost Degradation on Infrastructure.” Nature Reviews Earth & Environment 3 (1): 24–38. https://doi.org/10.1038/s43017-021-00247-8.
  • Hopmans, J. W., and J. H. Dane. 1986. “Thermal Conductivity of two Porous Media as a Function of Water Content, Temperature, and Density.” Soil Science 142 (4): 187–195. https://doi.org/10.1097/00010694-198610000-00001.
  • Jame, Y., and D. Norum. 1980. “Heat and Mass Transfer in a Freezing Unsaturated Porous Medium.” Water Resources Research 16 (4): 811–819. https://doi.org/10.1029/WR016i004p00811.
  • Johansen, O. 1975. Thermal Conductivity of Soils. Ph.D. Thesis. University of Trondheim, Trondheim, Norway: US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N. H. CRREL Draft English Translation.
  • Kahr, G., and M. Müller-Vonmoos. 1982. Wärmeleitfähigkeit von Bentonit MX80 und von Montigel nach der Heizdrahtmethode. Technischer Bericht NTB, 82.
  • Kasubuchi, T., T. Momose, F. Tsuchiya, and V. R. Tarnawski. 2007. “Normalized Thermal Conductivity Model for Three Japanese Soils.” Rural Eng.(Jpn.) 251: 53–57.
  • Kersten, M. S. 1949. Thermal Properties of Soils. Bulletin 28; University of Minnesota, Institute of Technology, Engineering Experiment Station: Minneapolis, MN, USA, Volume LII.
  • Kim, Kwang-Yul, Ji-Young Kim, Jinju Kim, Saerim Yeo, Hanna Na, Benjamin D. Hamlington, and Robert R. Leben. 2019. “Vertical Feedback Mechanism of Winter Arctic Amplification and sea ice Loss.” Scientific Reports 9 (1): 1184. https://doi.org/10.1038/s41598-018-38109-x.
  • Kunitski, Maksim, Nicolas Eicke, Pia Huber, Jonas Köhler, Stefan Zeller, Jörg Voigtsberger, Nikolai Schlott, et al. 2019. “Double-slit Photoelectron Interference in Strong-Field Ionization of the Neon Dimer.” Nature Communications 10 (1): 1–9. https://doi.org/10.1038/s41467-018-07882-8.
  • Langer, M., S. Westermann, S. Muster, K. Piel, and J. Boike. 2011a. “The Surface Energy Balance of a Polygonal Tundra Site in Northern Siberia – Part 1: Spring to Fall.” The Cryosphere 5 (1): 151–171. https://doi.org/10.5194/tc-5-151-2011.
  • Langer, M., S. Westermann, S. Muster, K. Piel, and J. Boike. 2011b. “The Surface Energy Balance of a Polygonal Tundra Site in Northern Siberia – Part 2: Winter.” The Cryosphere 5 (2): 509–524. https://doi.org/10.5194/tc-5-509-2011.
  • Lawrence, D. M., and A. G. Slater. 2008. “Incorporating Organic Soil Into a Global Climate Model.” Climate Dynamics 30 (2): 145–160. https://doi.org/10.1007/s00382-007-0278-1.
  • Li, Kai-Qi, Qing Kang, Jia-Yan Nie, and Xian-Wen Huang. 2022a. “Artificial Neural Network for Predicting the Thermal Conductivity of Soils Based on a Systematic Database.” Geothermics 103: 102416. https://doi.org/10.1016/j.geothermics.2022.102416.
  • Li, K.-Q., Y. Liu, and Q. Kang. 2022b. “Estimating the Thermal Conductivity of Soils Using six Machine Learning Algorithms.” International Communications in Heat and Mass Transfer 136: 106139. https://doi.org/10.1016/j.icheatmasstransfer.2022.106139.
  • Li, Yi, M. A. Shao, W. Y. Wang, Q. J. Wang, J. F. Zhang, J. B. Lai, et al. 2003. “Influence of Soil Textures on the Thermal Properties.” Transactions of the Chinese Society of Agricultural Engineering 19 (4): 62–65. in Chinese.
  • Li, Ren, T. H. Wu, Lin Zhao, Changwei Xie, Yao Xiao, Guojie Hu, Yizhen Du, et al. 2015. “Investigation on the Soil Thermal Conductivity of Different Land Surface Patterns in the Northern Qinghai-Tibetan Plateau, China.” GEO Quebec 548: 1–7.
  • Li, Ren, Lin Zhao, Tonghua Wu, Qinxue Wang, Yongjian Ding, Jimin Yao, Xiaodong Wu, et al. 2019. “Soil Thermal Conductivity and its Influencing Factors at the Tanggula Permafrost Region on the Qinghai–Tibet Plateau.” Agricultural and Forest Meteorology 264: 235–246. https://doi.org/10.1016/j.agrformet.2018.10.011.
  • Liu, Wenhao, Ren Li, Xiaoqian Shi, Tonghua Wu, and Xiao Dong Wu. 2023c. “Hotspots and Trends in Frozen Soils Research in 2010–2019.” Permafrost and Periglacial Processes 34 (2): 169–179. https://doi.org/10.1002/ppp.2186.
  • Liu, Wenhao, Ren Li, Tonghua Wu, Xiaoqian Shi, Lin Zhao, Xiaodong Wu, Guojie Hu, et al. 2023a. “Simulation of Soil Thermal Conductivity Based on Different Schemes: An Empirical Comparison of 13 Models.” International Journal of Thermal Sciences 190: 108301. https://doi.org/10.1016/j.ijthermalsci.2023.108301.
  • Liu, Wenhao, Ren Li, Tonghua Wu, Xiaoqian Shi, Lin Zhao, Xiaodong Wu, Guojie Hu, et al. 2023b. “Spatiotemporal Patterns and Regional Differences in Soil Thermal Conductivity on the Qinghai–Tibet Plateau.” Remote Sensing 15 (4): 1168. https://doi.org/10.3390/rs15041168.
  • Lu, Sen, Tusheng Ren, Yuanshi Gong, and Robert Horton. 2007. “An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature.” Soil Science Society of America Journal 71 (1): 8–14. https://doi.org/10.2136/sssaj2006.0041.
  • Lu, Yan, Wenbing Yu, Da Hu, and Weibo Liu. 2018. “Experimental Study on the Thermal Conductivity of Aeolian Sand from the Tibetan Plateau.” Cold Regions Science and Technology 146: 1–8. https://doi.org/10.1016/j.coldregions.2017.11.006.
  • Malek, K., K. Malek, and F. Khanmohammadi. 2021. “Response of Soil Thermal Conductivity to Various Soil Properties.” International Communications in Heat and Mass Transfer 127: 105516. https://doi.org/10.1016/j.icheatmasstransfer.2021.105516.
  • McCombie, M. L., V. R. Tarnawski, G. Bovesecchi, P. Coppa, and W. H. Leong. 2017. “Thermal Conductivity of Pyroclastic Soil (Pozzolana) from the Environs of Rome.” International Journal of Thermophysics 38: 1–15. https://doi.org/10.1007/s10765-016-2161-y.
  • McInnes, K. J. 1981. Thermal Conductivities of Soils from Dryland Wheat Regions of Eastern Washington. MS Thesis. Washington State University.
  • Miner, Kimberley R., Merritt R. Turetsky, Edward Malina, Annett Bartsch, Johanna Tamminen, A. David McGuire, Andreas Fix, Colm Sweeney, Clayton D. Elder, and Charles E. Miller. 2022. “Permafrost Carbon Emissions in a Changing Arctic.” Nature Reviews Earth & Environment 3 (1): 55–67. https://doi.org/10.1038/s43017-021-00230-3.
  • Mochizuki, H., M. Mizoguchi, and T. Miyazaki. 2008. “Effects of NaCl Concentration on the Thermal Conductivity of Sand and Glass Beads with Moisture Contents at Levels Below Field Capacity.” Soil Science and Plant Nutrition 54 (6): 829–838. https://doi.org/10.1111/j.1747-0765.2008.00321.x.
  • Nikolaev, I. V., W. H. Leong, and M. A. Rosen. 2013. “Experimental Investigation of Soil Thermal Conductivity Over a Wide Temperature Range.” International Journal of Thermophysics 34: 1110–1129. https://doi.org/10.1007/s10765-013-1456-5.
  • Obu, Jaroslav, Sebastian Westermann, Annett Bartsch, Nikolai Berdnikov, Hanne H. Christiansen, Avirmed Dashtseren, Reynald Delaloye, et al. 2019. “Northern Hemisphere Permafrost map Based on TTOP Modelling for 2000–2016 at 1 km2 Scale.” Earth-Science Reviews 193: 299–316. https://doi.org/10.1016/j.earscirev.2019.04.023.
  • O'Connor, Michael T., M. Bayani Cardenas, Stephen B. Ferencz, Yue Wu, Bethany T. Neilson, Jingyi Chen, and George W. Kling. 2020. “Empirical Models for Predicting Water and Heat Flow Properties of Permafrost Soils.” Geophysical Research Letters 47 (11): e2020GL087646. https://doi.org/10.1029/2020GL087646.
  • Peng, Xiaoqing, Tingjun Zhang, Oliver W. Frauenfeld, Shijin Wang, Lina Qiao, Ran Du, and Cuicui Mu. 2020. “Northern Hemisphere Greening in Association With Warming Permafrost.” Journal of Geophysical Research: Biogeosciences 125 (1): e2019JG005086. https://doi.org/10.1029/2019JG005086.
  • Peters-Lidard, C. D., E. Blackburn, X. Liang, and E. F. Wood. 1998. “The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures.” Journal of the Atmospheric Sciences 55 (7): 1209–1224.
  • Poutou, E., G. Krinner, C. Genthon, and N. de Noblet-Ducoudré. 2004. “Role of Soil Freezing in Future Boreal Climate Change.” Climate Dynamics 23 (6): 621–639. https://doi.org/10.1007/s00382-004-0459-0.
  • Ran, Youhua, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, et al. 2022. “New High-Resolution Estimates of the Permafrost Thermal State and Hydrothermal Conditions Over the Northern Hemisphere.” Earth System Science Data 14 (2): 865–884. https://doi.org/10.5194/essd-14-865-2022.
  • Rantanen, Mika, Alexey Yu. Karpechko, Antti Lipponen, Kalle Nordling, Otto Hyvärinen, Kimmo Ruosteenoja, Timo Vihma, and Ari Laaksonen. 2022. “The Arctic has Warmed Nearly Four Times Faster Than the Globe Since 1979.” Communications Earth & Environment 3 (1): 168. https://doi.org/10.1038/s43247-022-00498-3.
  • Rizvi, Zarghaam Haider, Syed Mohammad Baqir Husain, Hasan Haider, and Frank Wuttke. 2020a. “Effective Thermal Conductivity of Sands Estimated by Group Method of Data Handling (GMDH).” Materials Today: Proceedings 26: 2103–2107. https://doi.org/10.1016/j.matpr.2020.02.454.
  • Rizvi, Zarghaam Haider, Husain Haider Zaidi, Syed Jawad Akhtar, Amir Shorian Sattari, and Frank Wuttke. 2020b. “Soft and Hard Computation Methods for Estimation of the Effective Thermal Conductivity of Sands.” Heat and Mass Transfer 56 (6): 1947–1959. https://doi.org/10.1007/s00231-020-02833-w.
  • Romanovsky, V. E., and T. E. Osterkamp. 1997. “Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic.” Permafrost and Periglacial Processes 8 (1): 1–22.
  • Sekiyama, T. T., Y. Kurosaki, M. Kajino, M. Ishizuka, B. Buyantogtokh, J. Wu, and T. Maki. 2023. “Improvement in Dust Storm Simulation by Considering Stone Coverage Effects for Stony Deserts in East Asia.” Journal of Geophysical Research: Atmospheres 128 (2): e2022JD037295. https://doi.org/10.1029/2022JD037295.
  • Serikova, S., O. S. Pokrovsky, H. Laudon, I. V. Krickov, A. G. Lim, R. M. Manasypov, and J. Karlsson. 2019. “High Carbon Emissions from Thermokarst Lakes of Western Siberia.” Nature Communications 10 (1): 1–7. https://doi.org/10.1038/s41467-019-09592-1.
  • Singh, D. N., and K. Devid. 2000. “Generalized Relationships for Estimating Soil Thermal Resistivity.” Experimental Thermal and Fluid Science 22 (3-4): 133–143. https://doi.org/10.1016/S0894-1777(00)00020-0.
  • Slater, A. G., and D. M. Lawrence. 2013. “Diagnosing Present and Future Permafrost from Climate Models.” Journal of Climate 26 (15): 5608–5623. https://doi.org/10.1175/JCLI-D-12-00341.1.
  • Su, Z., P. de Rosnay, J. Wen, L. Wang, and Y. Zeng. 2013. “Evaluation of ECMWF's Soil Moisture Analyses Using Observations on the Tibetan Plateau.” Journal of Geophysical Research: Atmospheres 118 (11): 5304–5318. https://doi.org/10.1002/jgrd.50468.
  • Tang, A. M., Y. J. Cui, and T. T. Le. 2008. “A Study on the Thermal Conductivity of Compacted Bentonites.” Applied Clay Science 41 (3-4): 181–189. https://doi.org/10.1016/j.clay.2007.11.001.
  • Tao, Z. X., and J. S. Zhang. 1983. “The Thermal Conductivity of Thawed and Frozen Soils with High Water (ice) Content.” Journal of Glaciology and Geocryology 5 (2): 75–80. in Chinese.
  • Tarnawski, V. R., and W. H. Leong. 2016. “Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils.” International Journal of Thermophysics 37 (2): 1–42. https://doi.org/10.1007/s10765-015-2024-y.
  • Tarnawski, V. R., M. L. McCombie, T. Momose, I. Sakaguchi, and W. H. Leong. 2013. “Thermal Conductivity of Standard Sands. Part III. Full Range of Saturation.” International Journal of Thermophysics 34: 1130–1147.
  • Tarnawski, V. R., T. Momose, M. L. McCombie, and W. H. Leong. 2015. “Canadian field soils III. Thermal-conductivity data and modeling.” International Journal of Thermophysics 36: 119–156. https://doi.org/10.1007/s10765-014-1793-z.
  • Tarnawski, V. R., F. Tsuchiya, P. Coppa, and G. Bovesecchi. 2019. “Volcanic Soils: Inverse Modeling of Thermal Conductivity Data.” International Journal of Thermophysics 40: 1–25. https://doi.org/10.1007/s10765-018-2480-2.
  • Tokoro, T., T. Ishikawa, and S. Shirai. 2016. “Estimation methods for thermal conductivity of sandy soil with electrical characteristics.” Soils and Foundations 56 (5): 927–936.
  • Wang, Jiaming, Hailong He, Min Li, Miles Dyck, Bing Si, and Jialong Lv. 2021. “A Review and Evaluation of Thermal Conductivity Models of Saturated Soils.” Archives of Agronomy and Soil Science 67 (7): 974–986. https://doi.org/10.1080/03650340.2020.1771315.
  • Wang, Xuejia, Youhua Ran, Guojin Pang, Deliang Chen, Bo Su, Rui Chen, Xin Li, et al. 2022. “Contrasting Characteristics, Changes, and Linkages of Permafrost Between the Arctic and the Third Pole.” Earth-Science Reviews 230: 104042. https://doi.org/10.1016/j.earscirev.2022.104042.
  • Wang, Chenghai, Zhilan Wang, Ying Kong, Feimin Zhang, Kai Yang, and Tingjun Zhang. 2019. “Most of the Northern Hemisphere Permafrost Remains Under Climate Change.” Scientific Reports 9 (1): 3295. https://doi.org/10.1038/s41598-019-39942-4.
  • Wang, Chenghai, Di Wu, Ying Kong, Ruolin Li, and Hongxia Shi. 2017. “Changes of Soil Thermal and Hydraulic Regimes in Northern Hemisphere Permafrost Regions Over the 21st Century.” Arctic, Antarctic, and Alpine Research 49 (2): 305–319. https://doi.org/10.1657/AAAR0016-026.
  • Wang, C., and K. Yang. 2018. “A new Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation.” Journal of Advances in Modeling Earth Systems 10 (4): 927–950. https://doi.org/10.1002/2017MS001148.
  • Wen, H., J. Bi, and D. Guo. 2020. “Calculation of the Thermal Conductivities of Fine-Textured Soils Based on Multiple Linear Regression and Artificial Neural Networks.” European Journal of Soil Science 71 (4): 568–579. https://doi.org/10.1111/ejss.12934.
  • Woodside, W., and J. H. Messmer. 1961. “Thermal conductivity of porous media.” I. Unconsolidated sands. Journal of applied physics 32 (9): 1688–1699. https://doi.org/10.1063/1.1728419.
  • Xu, C., L. Torres-Rojas, N. Vergopolan, and N. W. Chaney. 2023. “The Benefits of Using State-Of-The-Art Digital Soil Properties Maps to Improve the Modeling of Soil Moisture in Land Surface Models.” Water Resources Research 59 (4): e2022WR032336.
  • Yamasaki, M., and Y. Kawamura. 2009. “Thermal Diffusivity and Thermal Conductivity of Mg–Zn–Rare Earth Element Alloys with Long-Period Stacking Ordered Phase.” Scripta Materialia 60 (4): 264–267. https://doi.org/10.1016/j.scriptamat.2008.10.022.
  • Yang, Shuhua, Ren Li, Tonghua Wu, Guojie Hu, Yao Xiao, Yizhen Du, Xiaofan Zhu, et al. 2020. “Evaluation of Reanalysis Soil Temperature and Soil Moisture Products in Permafrost Regions on the Qinghai-Tibetan Plateau.” Geoderma 377: 114583. https://doi.org/10.1016/j.geoderma.2020.114583.
  • Yang, Shuhua, Ren Li, Tonghua Wu, Xiaodong Wu, Lin Zhao, Guojie Hu, Xiaofan Zhu, et al. 2021. “Evaluation of Soil Thermal Conductivity Schemes Incorporated Into CLM5.0 in Permafrost Regions on the Tibetan Plateau.” Geoderma 401: 115330. https://doi.org/10.1016/j.geoderma.2021.115330.
  • You, Qinglong, Ziyi Cai, Nick Pepin, Deliang Chen, Bodo Ahrens, Zhihong Jiang, Fangying Wu, et al. 2021. “Warming Amplification Over the Arctic Pole and Third Pole: Trends, Mechanisms and Consequences.” Earth-Science Reviews 217: 103625. https://doi.org/10.1016/j.earscirev.2021.103625.
  • Zhang, T., R. G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown. 2008. “Statistics and Characteristics of Permafrost and Ground-ice Distribution in the Northern Hemisphere.” Polar Geography 31 (1-2): 47–68. https://doi.org/10.1080/10889370802175895.
  • Zhang, X., Z. Gao, and D. Wei. 2012. “The Sensitivity of Ground Surface Temperature Prediction to Soil Thermal Properties Using the Simple Biosphere Model (SiB2).” Advances in Atmospheric Sciences 29 (3): 623–634. https://doi.org/10.1007/s00376-011-1162-9.
  • Zhang, N., and Z. Wang. 2017. “Review of Soil Thermal Conductivity and Predictive Models.” International Journal of Thermal Sciences 117: 172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013.
  • Zhang, Tao, Cai-jin Wang, Song-yu Liu, Nan Zhang, and Tong-wei Zhang. 2020. “Assessment of Soil Thermal Conduction Using Artificial Neural Network Models.” Cold Regions Science and Technology 169: 102907. https://doi.org/10.1016/j.coldregions.2019.102907.
  • Zhang, Nan, Xinbao Yu, Asheesh Pradhan, and Anand J. Puppala. 2017. “A new Generalized Soil Thermal Conductivity Model for Sand–Kaolin Clay Mixtures Using Thermo-Time Domain Reflectometry Probe Test.” Acta Geotechnica 12: 739–752. https://doi.org/10.1007/s11440-016-0506-0.
  • Zhang, Yanjun, Ling Zhou, Zhongjun Hu, Ziwang Yu, Shuren Hao, Zhihong Lei, and Yangyang Xie. 2018. “Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System.” Energies 11 (7): 1896. https://doi.org/10.3390/en11071896.
  • Zhao, Ying, Bingcheng Si, Zhenhua Zhang, Min Li, Hailong He, and Robert Lee Hill. 2019. “A new Thermal Conductivity Model for Sandy and Peat Soils.” Agricultural and Forest Meteorology 274: 95–105. https://doi.org/10.1016/j.agrformet.2019.04.004.
  • Zhao, Hong, Yijian Zeng, Shaoning Lv, and Zhongbo Su. 2018. “Analysis of Soil Hydraulic and Thermal Properties for Land Surface Modeling Over the Tibetan Plateau.” Earth System Science Data 10 (2): 1031–1061. https://doi.org/10.5194/essd-10-1031-2018.