1,248
Views
4
CrossRef citations to date
0
Altmetric
Livestock Systems, Management and Environment

Interactions among breed, farm intensiveness and cow productivity on predicted enteric methane emissions at the population level

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 59-75 | Received 28 Oct 2022, Accepted 11 Dec 2022, Published online: 02 Jan 2023

References

  • Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. 2020. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal. 14(S1):S2–S16.
  • Berton M, Bittante G, Zendri F, Ramanzin M, Schiavon S, Sturaro E. 2020. Environmental impact and efficiency of use of resources of different mountain dairy farming systems. Agric Syst. 181:102806.
  • Bittante G. 2022. Effect of breed of cow, farm intensiveness, and cow’s productivity on infrared predicted milk urea. J Dairy Sci. 105(6):5084–5096. doi: 10.3168/jds.2021-21105.
  • Bittante G, Cecchinato A. 2020. Heritability estimates of enteric methane emissions predicted from fatty acid profiles, and their relationships with milk composition, cheese-yield and body size and condition. Ital J Anim Sci. 19:114–126.
  • Bittante G, Cecchinato A, Schiavon S. 2018. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. J Dairy Sci. 101(2):1752–1766.
  • Bittante G, Cecchinato A, Tagliapietra F, Schiavon S, Toledo-Alvarado H. 2021. Effects of breed, farm intensiveness and cow productivity level on cheese-making ability predicted using infrared spectral data at the population level. J Dairy Sci. 104(11):11790–11806. doi: 10.3168/jds.2021-20499
  • Bittante G, Cipolat-Gotet C. 2018. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra. J Dairy Sci. 101(8):7219–7235.
  • Bittante G, Cipolat-Gotet C, Cecchinato A. 2020. Genetic parameters of different FTIR-enabled phenotyping tools derived from milk fatty acid profile for reducing enteric methane emissions in dairy cattle. Animals. 10(9):1617–1654.
  • Bougouin A, Appuhamy J, Ferlay A, Kebreab E, Martin C, Moate PJ, Benchaar C, Lund P, Eugène M. 2019. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: approach by meta-analysis. J Dairy Sci. 102(11):10616–10631.
  • Chilliard Y, Martin C, Rouel J, Doreau M. 2009. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J Dairy Sci. 92(10):5199–5211.
  • de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. 2017. Invited review: phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci. 100(2):855–870.
  • Difford GF, Løvendahl P, Veerkamp RF, Bovenhuis H, Visker MHPW, Lassen J, de Haas Y. 2020. Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows? J Dairy Sci. 103(3):2442–2459.
  • Dijkstra J, van Zijderveld SM, Apajalahti JA, Bannink A, Gerrits WJJ, Newbold JR, Perdok HB, Berends H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim Feed Sci Technol. 166-167:590–595.
  • Eskildsen CE, Rasmussen MA, Engelsen SB, Larsen LB, Poulsen NA, Skov T. 2014. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: understanding predictions of highly collinear reference variables. J Dairy Sci. 97(12):7940–7951.
  • Ferragina A, de los Campos G, Vazquez AI, Cecchinato A, Bittante G. 2015. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J Dairy Sci. 98:8133–8151.
  • Ferrand-Calmels M, Palhière I, Brochard M, Leray O, Astruc JM, Aurel MR, Barbey S, Bouvier F, Brunschwig P, Caillat H, et al. 2014. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry. J Dairy Sci. 97:17–35.
  • Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, et al. 2013. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 7(Suppl 2):220–234.
  • Gottardo P, Penasa M, Righi F, Lopez-Villalobos N, Cassandro M, De Marchi M. 2017. Fatty acid composition of milk from holstein-friesian, brown swiss, simmental and alpine grey cows predicted by mid-infrared spectroscopy. Ital J Anim Sci. 16(3):380–389.
  • Heck JML, van Valenberg HJF, Dijkstra J, van Hooijdonk ACM. 2009. Seasonal variation in the Dutch bovine raw milk composition. J Dairy Sci. 92:4745–4755.
  • Hristov AN, Kebreab E, Niu M, Oh J, Bannink A, Bayat AR, Boland TM, Brito AF, Casper DP, Crompton LA, et al. 2018. Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. J Dairy Sci. 101:6655–6674.
  • ISO. 2013. ISO 9622:2013 Milk and liquid milk products - guidelines for the application of mid-infrared spectrometry 14. Available from: https://www.iso.org/standard/56874.html#:∼:text=ISO%209622%7CIDF%20141%3A2013,absorption%20of%20mid%2Dinfrared%20radiation.
  • ISO. 2020. Milk and milk products - guidelines for the application of near infrared spectrometry, updated guideline. ISO 21543:2020. Available from: https://www.iso.org/standard/77606.html
  • Kandel PB, Gengler N, Soyeurt H. 2015. Assessing variability of literature based methane indicator traits in a large dairy cow population. Biotechnol Agron Soc Environ. 19:11–19.
  • Kandel PB, Vanrobays ML, Vanlierde A, Dehareng F, Froidmont E, Gengler N, Soyeurt H. 2017. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. J Dairy Sci. 100:5578–5591.
  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci. 97:3231–3261.
  • Lassen J, Løvendahl P, Madsen J. 2012. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J Dairy Sci. 95:890–898.
  • Llonch P, Haskell MJ, Dewhurst RJ, Turner SP. 2017. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Animal. 11(2):274–284.
  • Lynch J. 2019. Availability of disaggregated greenhouse gas emissions from beef cattle production: a systematic review. Environ Impact Assess Rev. 76:69–78.
  • Maurice-Van Eijndhoven MHT, Bovenhuis H, Soyeurt H, Calus MPL. 2013. Differences in milk fat composition predicted by mid-infrared spectrometry among dairy cattle breeds in the Netherlands. J Dairy Sci. 96(4):2570–2582.
  • Maurice-Van Eijndhoven MHT, Hiemstra SJ, Calus MPL. 2011. Short communication: milk fat composition of 4 cattle breeds in the Netherlands. J Dairy Sci. 94(2):1021–1025.
  • Mazzetto AM, Falconer S, Ledgard S. 2022. Mapping the carbon footprint of milk production from cattle: a systematic review. J Dairy Sci. 105:22117.
  • Mohammed R, McGinn SM, Beauchemin KA. 2011. Prediction of enteric methane output from milk fatty acid concentrations and rumen fermentation parameters in dairy cows fed sunflower, flax, or canola seeds. J Dairy Sci. 94(12):6057–6068.
  • Moumen A, Azizi G, Ben Chekroun K, Baghour M. 2016. The effects of livestock methane emission on the global warming: a review. IJGW. 9(2):229–253.
  • Negussie E, de Haas Y, Dehareng F, Dewhurst RJ, Dijkstra J, Gengler N, Morgavi DP, Soyeurt H, van Gastelen S, Yan T, et al. 2017. Invited review: large-scale indirect measurements for enteric methane emissions in dairy cattle: a review of proxies and their potential for use in management and breeding decisions. J Dairy Sci. 100(4):2433–2453.
  • Negussie E, Gengler N, Pszczola M. 2018. Combining heterogeneous across-country data for prediction of enteric methane from proxies in dairy cattle Combining heterogeneous across-country data for prediction of enteric methane from proxies in dairy cattle. Proc World Congr Genet Appl to Livest Prod. 2:760. https://library.wur.nl/WebQuery/wurpubs/543527.
  • Niermöller A, Holroyd S. 2019. Application of near infrared spectrometry for the analysis of milk and milk products. Bullettin IDF. 497(2019):1–19.
  • NRC. 2001. Nutrient requirements of dairy cattle. Seventh revised ed. Washington (DC): National Academy Press.
  • Pegolo S, Cecchinato A, Casellas J, Conte G, Mele M, Schiavon S, Bittante G. 2016. Genetic and environmental relationships of detailed milk fatty acids profile determined by gas chromatography in Brown Swiss cows. J Dairy Sci. 99:1315–1330.
  • Pérez P, de los Campos G. 2014. Genome-wide regression and prediction with BLGR statistical package. Genetics. 198(2):483–495.
  • Poulsen NA, Gustavsson F, Glantz M, Paulsson M, Larsen LB, Larsen MK. 2012. The influence of feed and herd on fatty acid composition in 3 dairy breeds (Danish Holstein, Danish Jersey, and Swedish Red). J Dairy Sci. 95(11):6362–6371. doi: 10.3168/jds.2012-5820
  • Rico DE, Chouinard PY, Hassanat F, Benchaar C, Gervais R. 2016. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. Animal. 10(2):203–211.
  • Ross SA, Chagunda MGG, Topp CFE, Ennos R. 2014. Effect of cattle genotype and feeding regime on greenhouse gas emissions intensity in high producing dairy cows. Livest Sci. 170:158–171.
  • Rovere G, de los Campos G, Lock AL, Worden L, Vazquez AI, Lee K, Tempelman RJ. 2021. Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins. J Dairy Sci. 104(10):11242–11258.
  • Schiavon S, Sturaro E, Tagliapietra F, Ramanzin M, Bittante G. 2019. Nitrogen and phosphorus excretion on mountain farms of different dairy systems. Agric Syst. 168:36–47.
  • Shetty N, Difford G, Lassen J, Løvendahl P, Buitenhuis AJ. 2017. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. J Dairy Sci. 100(11):9052–9060.
  • Soyeurt H, Dardenne P, Gillon A, Croquet C, Vanderick S, Mayeres P, Bertozzi C, Gengler N. 2006. Variation in FA contents of milk and milk fat within and across breeds. J Dairy Sci. 89(12):4858–4865.
  • Stocco G, Cipolat-Gotet C, Gasparotto V, Cecchinato A, Bittante G. 2018. Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production. Animal. 12(2):434–444.
  • Toledo-Alvarado H, Cecchinato A, Bittante G. 2017. Fertility traits of Holstein, Brown Swiss, Simmental, and Alpine Grey cows are differently affected by herd productivity and milk yield of individual cows. J Dairy Sci. 100(10):8220–8231.
  • Toledo-Alvarado H, Pérez-Cabal MA, Tempelman RJ, Cecchinato A, Bittante G, de los Campos G, Vazquez AI. 2021. Association between days open and milk spectral data in dairy cows. J Dairy Sci. 104(3):3665–3675.
  • Toledo-Alvarado H, Vazquez AI, de los Campos G, Tempelman RJ, Bittante G, Cecchinato A. 2018a. Diagnosing pregnancy status using infrared spectra and milk composition in dairy cows. J Dairy Sci. 101(3):2496–2505.
  • Toledo-Alvarado H, Vazquez AI, de los Campos G, Tempelman RJ, Gabai G, Cecchinato A, Bittante G. 2018b. Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows. J Dairy Sci. 101(10):9135–9153.
  • van Engelen S, Bovenhuis H, Dijkstra J, van Arendonk JAM, Visker MHPW. 2015. Short communication: genetic study of methane production predicted from milk fat composition in dairy cows. J Dairy Sci. 98(11):8223–8226.
  • van Gastelen S, Dijkstra J. 2016. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J Sci Food Agric. 96(12):3963–3968.
  • van Gastelen S, Mollenhorst H, Antunes-Fernandes EC, Hettinga KA, van Burgsteden GG, Dijkstra J, Rademaker JLW. 2018. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography–based milk fatty acid profiles. J Dairy Sci. 101(6):5582–5598.
  • van Lingen HJ, Crompton LA, Hendriks WH, Reynolds CK, Dijkstra J. 2014. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J Dairy Sci. 97(11):7115–7132.
  • van Middelaar CE, Berentsen PBM, Dijkstra J, Van Arendonk JAM, De Boer IJM. 2015. Effect of feed-related farm characteristics on relative values of genetic traits in dairy cows to reduce greenhouse gas emissions along the chain. J Dairy Sci. 98(7):4889–4903.
  • Vanbergue E, Delaby L, Peyraud JL, Colette S, Gallard Y, Hurtaud C. 2017. Effects of breed, feeding system, and lactation stage on milk fat characteristics and spontaneous lipolysis in dairy cows. J Dairy Sci. 100(6):4623–4636.
  • Vanlierde A, Vanrobays ML, Gengler N, Dardenne P, Froidmont E, Soyeurt H, McParland S, Lewis E, Deighton MH, Mathot M, et al. 2016. Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes. Anim Prod Sci. 56(3):258–264.
  • von Soosten D, Meyer U, Flachowsky G, Dänicke S. 2020. Dairy cow health and greenhouse gas emission intensity. Dairy. 1(1):3.
  • Wang Q, Bovenhuis H. 2019. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. J Dairy Sci. 102(7):6288–6295.