865
Views
0
CrossRef citations to date
0
Altmetric
Ruminants Nutrition and Feeding

Biodegraded hay with graded addition of Pleurotus ostreatus improves dry matter disappearance and reduces methane production of diets incubated in vitro

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 347-358 | Received 25 Oct 2022, Accepted 16 Mar 2023, Published online: 31 Mar 2023

References

  • Ábrego-García A, Poggi-Varaldo HM, Mendoza-Vargas A, Mercado-Valle FG, Ríos-Leal E, Ponce-Noyola T, Calva-Calva G. 2021a. Effects of fermented oat straw as a lovastatin carrier on in vitro methane production and rumen microbiota. Front Energy Res. 9:630701.
  • Akinfemi A, Ogunwole OA. 2012. Chemical Composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak J Anim Sci. 45(1):14–20.
  • Akpinar M, Urek RO. 2012. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep Biochem Biotechnol. 42(6):582–597.
  • Alarcón J, Águila S, Arancibia-Ávila P, Fuentes O, Zamorano-Ponce E, Hernández M. 2003. Production and purification of statins from Pleurotus ostreatus (basidiomycetes) strains. Z Naturforsch. 58c:62–64.
  • Alarcón J, Águila S. 2006. Lovastatin Production by Pleurotus ostreatus: effects of the C: n Ratio. Z Naturforsch. 61c:95–98.
  • AOAC 1997. Association of official analytical chemists international official methods of analysis. 16th ed. Arlington, Commonwealth of Virginia: AOAC International.
  • Arias-Islas E, Morales-Barrera J, Prado-Rebolledo O, García-Castillas A. 2020. Metabolismo en rumiantes y su asociación con analitos bioquímicos sanguíneos. Abanico Vet. 10:1–24.
  • Astudillo-Neira R, Muñoz-Nuñez E, Quiroz-Carreno S, Ávila-Stagno J, Alarcon-Enos J. 2022. Bioconversion in Ryegrass-Fescue hay by Pleurotus ostreatus to increase their nutritional value for ruminant. Agriculture. 12:534.
  • Ávila JS, Chaves AV, Hernández-Calva M, Beauchemin KA, McGinn SM, Wang Y, Harstad OM, Mc Allister TA. 2011. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Anim Feed Sci Techno. 166–167:265–268.
  • Ávila-Stagno J, Chaves AV, Ribeiro GO, Jr, Ungerfeld EM, McAllister TA. 2014. Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. Br J Nutr. 111(5):829–835.
  • Badarina I, Evvyernie D, Toharmat T, Herliyana EN, Darusman LK. 2013. Nutritive value of coffee husk fermented with Pleurotus ostreatus as ruminant feed. Media Peternakan. 36(1):58–63.
  • Bath DL, Marble VL. 1989. Testing alfalfa for its feeding value. Leaflet. 21437. WREP 109. Division of agricultural natural resources. University California, Oakland, CA.
  • Beg S, Zafar SI, Shah FH. 1986. Rice husk biodegradation by Pleurotus ostreatus to produce a ruminant feed. Agricul Wastes. 17:15–21.
  • Blümmel M, Steingass H, Becker K. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br J Nutr. 77(6):911–921.
  • Boadi DA, Wittenberg KM, Scott SL, Burton D, Buckley K, Small JA, Ominski KH. 2004. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Can. J Anim Sci. 84:445–453.
  • Choudhury PK, Jena R, Tomar SK, Puniya AK. 2022. Reducing Enteric Methanogenesis through Alternate Hydrogen Sinks in the Rumen. Methane. 1:320–341.
  • Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. 2007. Prediction of Methane Production from Dairy and Beef Cattle. J. Dairy Sci. 90(7):3456–3466.
  • Fazaeli H, Jelan ZA, Mahmodzadeh H, Liang JB, Azizi A, Osman A. 2002. Effect of fungal treated wheat straw on the diet of lactating cows. Asian-Aust J Anim Sci. 15(11):1573–1578.
  • Fedorah PM, Hrudey SE. 1983. A simple apparatus for measuring gas production by methanogenic culture in serum bottles. Environ Sci Technol Lett. 4(10):425–432.
  • Foggi G, Terranova M, Conte G, Mantino A, Amelchanka SL, Kreuzer M, Mele M. 2022. In vitro screening of the ruminal methane and ammonia mitigating potential of mixtures of either chestnut or quebracho tannins with blends of essential oils as feed additives. It J Anim Sci. 21(1):1520–1532.
  • Getachew G, Crovetto GM, Fodevila M, Krishnamoorthy U, Sigh B, Spanghero M, Steingass H, Robinson PH, Kailas MM. 2002. Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds Anim. Feed Sci Technol. 102:171–182.
  • Jahromi MF, Liang JB, Mohamad R, Goh YM, Shokryazdan P, Ho YW. 2013. Lovastatin-enriched rice straw enhances biomass quality and suppresses ruminal methanogenesis. BioMed Res Int. 2013:397934.
  • Jain S, Caforio A, Driessen AJM. 2014. Biosynthesis of archaeal membrane ether lipids. Front Microbiol. 5:1–16.
  • Khalil JK, Sawaya WN, Hyder SZ. 1986. Nutrient composition of Atriplex leaves grown in Saudi Arabia. Journal of Range Management. 39:104–107.
  • Kumari S, Das D. 2015. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process. Bioresour Technol. 194:354–363.
  • McAllister TA, Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric. 48:7–13.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz H, Schrieder W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci. 93:217–222.
  • Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim Res Dev. 28:7–55.
  • Mertens DR. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int. 85(6):1217–1240.
  • Miller TL, Wolin MJ. 2001. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by Hydroxymethylglutaryl ∼ SCoA reductase inhibitors. J Dairy Sci. 84(6):1445–1448.
  • Nagaraja TG. 2016. Chapter 2, Microbiology of the rumen. In: Millen D, De Beni-Arrigoni M, Lauritano-Pacheco R, editors. Rumenology. Cham: Springer. p. 39–61.
  • Nsereko VL, Morgavi DP, Rode LM, Beauchemin KA, McAllister TA. 2000. Effects of fungal enzyme preparations on hydrolysis and subsequent degradation of alfalfa hay fiber by mixed rumen microorganisms in vitro. Anim Feed Sci Technol. 88:153–170.
  • Patra AK. 2012. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess. 184(4):1929–1952.
  • Purcell PJ, ÓBrien M, Boland TM, ÓDonovan M, ÓKiely P. 2011. Impacts of herbage mass and sward allowance of perennial ryegrass sampled throughout the growing season on in vitro rumen methane production. Anim. Feed Sci Technol. 166–167: 405–411.
  • Rahman MM, Lourenço M, Hassim HA, Baars J, Sonnenberg A, Cone JW, De Boever J, Fievez V. 2011. Improving ruminal degradability of oil palm fronds using white rot fungi. Anim Feed Sci Technol. 169(3-4):157–166.
  • Ramírez JF, Posada-Ochoa S, Rosero-Noguera R. 2015. Effect of lovastatin on in vitro methane production and dry matter digestibility of kikuyu grass (Cenchrus clandestinus). Ces Med Vet Zootec. 10(2):111–121.
  • Scoones I. 2022. Livestock, methane, and climate change: the politics of global assessments. WIREs Clim Change. 14:e790.
  • Sembiring M, Baba ASH. 2022. In Vitro Gas Production Test: towards Rapid Nutritional Evaluation of Roughages for Ruminant Feeding. Formosa J Sci Technol. 1(4):247–258.
  • Shrivastava B, Nandal P, Sharma A, Jain KK, Khasa YP, Das TK, Mani V, Kewalramani NJ, Kundu SS, Kuhad RC. 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresour Technol. 107:347–351.
  • Soto-Sánchez A, Ramírez-Bribiesca JE, Meneses-Mayo M, Loera-Corral O, Miranda-Romero LA, Bárcena-Gama R. 2015. Effects of Pleurotus sapidus (Schulzer) Sacc. treatment on nutrient composition and ruminal fermentability of barley straw, barley rootless and a mixture of the two. Chil J Agr Res. 75(3):313–319.
  • Suescún-Ospina ST, Vera N, Astudillo R, Yunda C, Williams P, Allende R, Avila-Stagno J. 2022. Effects of País grape marc inclusion in high and low forage diets: ruminal fermentation, methane production and volatile fatty acids. Ital J Anim Sci. 21(1):924–933.
  • Tuyen DV, Phoung HN, Cone JW, Baars JJP, Sonnenberg ASM, Hendriks WH. 2013. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour Technol. 129:256–263.
  • Valizadeh R, Sobhanirad S, Mojtahedi M. 2008. Chemical composition, ruminal degradability and in vitro gas production of wheat straw inoculated by Pleurotus ostreatus Mushrooms. J Anim Vet Adv. 7(11):1506–1510.
  • Vera N, Gutiérrez C, Allende R, Williams P, Fuentealba C, Ávila-Stagno J. 2018. Dose–response effect of a pine bark extract on in vitro ruminal ammonia and methane formation kinetics. Acta Agric Scand A Animal Sci. 68:181–189.
  • Vera N, Gutiérrez C, Williams P, Fuentealba C, Allende R, Ávila-Stagno J. 2021. Low concentrations of a polyphenolic extract from pine bark in high–concentrate diets decrease in vitro rumen ammonia nitrogen but not methane production. J Appl Anim Res. 49(1):413–422.
  • Wolin MJ, Miller TL. 2006. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. Inte Congr Ser. 1293:131–137.
  • Wu H, Meng Q, Yu Z. 2016. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures. Bioresour Technol. 211:603–609.
  • Zuo S, Niu D, Zheng M, Jiang D, Tian P, Li R, Xu C. 2018. Effect of Irpex lacteus, Pleurotus ostreatus and Pleurotus cystidiosus pretreatment of corn stover on its improvement of the in vitro rumen fermentation. J Sci Food Agric. 98(11):4287–4295.