509
Views
0
CrossRef citations to date
0
Altmetric
Animal Genetics and Breeding

Phenotypic and genetic characterisation of methane emission predicted from milk fatty acid profile of Sarda dairy ewes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 805-815 | Received 23 Apr 2023, Accepted 25 Jul 2023, Published online: 23 Aug 2023

References

  • Beauchemin KA, Kreuzer M, O'Mara F, McAllister TA. 2008. Nutritional management for enteric methane abatement: a review. Aust J Exp Agric. 48(2):21–27. doi: 10.1071/EA07199.
  • Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, et al. 2022. Invited review: current enteric methane mitigation options. J Dairy Sci. 105(12):9297–9326. doi: 10.3168/jds.2022-22091.
  • Belanche A, Hristov AN, van Lingen HJ, Denman SE, Kebreab E, Schwarm A, Kreuzer M, Niu M, Eugène M, Niderkorn V, et al. 2023. Prediction of enteric methane emissions by sheep using an intercontinental database. J Clean Prod. 384:135523. doi: 10.1016/j.jclepro.2022.135523.
  • Bell MJ, Potterton SL, Craigon J, Saunders N, Wilcox RH, Hunter M, Goodman JR, Garnsworthy PC. 2014. Variation in enteric methane emissions among cows on commercial dairy farms. Animal. 8(9):1540–1546. doi: 10.1017/S1751731114001530.
  • Bittante G, Cecchinato A. 2020. Heritability estimates of enteric methane emissions predicted from fatty acid profiles, and their relationships with milk composition, cheese-yield and body size and condition. Ital J Anim Sci. 19(1):114–126. doi: 10.1080/1828051X.2019.1698979.
  • Bittante G, Cecchinato A, Schiavon S. 2018. Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. J Dairy Sci. 101(2):1752–1766. doi: 10.3168/jds.2017-13472.
  • Boadi D, Benchaar C, Chiquette J, Massé D. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci. 84(3):319–335. doi: 10.4141/A03-109.
  • Bougouin A, Appuhamy JRN, Ferlay A, Kebreab E, Martin C, Moate PJ, Benchaar C, Lund P, Eugène M. 2019. Individual milk fatty acids are potential predictors of enteric methane emissions from dairy cows fed a wide range of diets: approach by meta-analysis. J Dairy Sci. 102(11):10616–10631. doi: 10.3168/jds.2018-15940.
  • Brito LF, Schenkel FS, Oliveira HR, Cánovas A, Miglior F. 2018. Meta-analysis of heritability estimates for methane emission indicator traits in cattle and sheep. Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Challenges – Environmental; Feb; Auckland, New Zealand.
  • Cain M, Jenkins S, Allen MR, Lynch J, Frame DJ, Macey AH, Peters GP. 2021. Methane and the Paris Agreement temperature goals. Philos Trans R Soc A. 380(2215):20200456.
  • Cannas A, Pes A, Mancuso R, Vodret B, Nudda A. 1998. Effect of dietary energy and protein concentration on the concentration of milk urea nitrogen in dairy ewes. J Dairy Sci. 81(2):499–508. doi: 10.3168/jds.S0022-0302(98)75602-4.
  • Caredda M, Addis M, Ibba I, Leardi R, Scintu MF, Piredda G, Sanna G. 2016. Prediction of fatty acid content in sheep milk by mid-infrared spectrometry with a selection of wavelengths by genetic algorithms. LWT Food Sci Technol. 65:503–510. doi: 10.1016/j.lwt.2015.08.048.
  • Cesarani A, Masuda Y, Tsuruta S, Nicolazzi EL, VanRaden PM, Lourenco D, Misztal I. 2021. Genomic predictions for yield traits in US Holsteins with unknown parent groups. J Dairy Sci. 104(5):5843–5853. doi: 10.3168/jds.2020-19789.
  • Chilliard Y, Martin C, Rouel J, Doreau M. 2009. Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. J Dairy Sci. 92(10):5199–5211. doi: 10.3168/jds.2009-2375.
  • Congio GF, Bannink A, Mayorga OL, Rodrigues JP, Bougouin A, Kebreab E, Carvalho PCF, Abdalla AL, Monteiro ALG, Ku-Vera JC, et al. 2022. Prediction of enteric methane production and yield in sheep using a Latin America and Caribbean database. Livest Sci. 264:105036. doi: 10.1016/j.livsci.2022.105036.
  • Correddu F, Cellesi M, Serdino J, Manca MG, Contu M, Dimauro C, Ibba I, Macciotta NPP. 2019. Genetic parameters of milk fatty acid profile in sheep: comparison between gas chromatographic measurements and Fourier-transform IR spectroscopy predictions. Animal. 13(3):469–476. doi: 10.1017/S1751731118001659.
  • Correddu F, Murgia MA, Mangia NP, Lunesu MF, Cesarani A, Deiana P, Giuseppe P, Nudda A. 2021. Effect of altitude of flock location, season of milk production and ripening time on the fatty acid profile of Pecorino Sardo cheese. Int Dairy J. 113:104895. doi: 10.1016/j.idairyj.2020.104895.
  • Correddu F, Serdino J, Manca MG, Cosenza G, Pauciullo A, Ramunno L, Macciotta NPP. 2017. Use of multivariate factor analysis to characterize the fatty acid profile of buffalo milk. J Food Compost Anal. 60:25–31. doi: 10.1016/j.jfca.2017.03.008.
  • Cottle DJ, Nolan JV, Wiedemann SG. 2011. Ruminant enteric methane mitigation: a review. Anim Prod Sci. 51(6):491–514. doi: 10.1071/AN10163.
  • de Haas Y, Veerkamp RF, de Jong G, Aldridge MN. 2021. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal. 15(Suppl. 1):100294. doi: 10.1016/j.animal.2021.100294.
  • de Haas Y, Windig JJ, Calus MPL, Dijkstra J, De Haan M, Bannink A, Veerkamp RF. 2011. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci. 94(12):6122–6134. doi: 10.3168/jds.2011-4439.
  • Dijkstra J, Oenema O, Bannink A. 2011. Dietary strategies to reducing N excretion from cattle: implications for methane emissions. Curr Res Environ Sustain. 3(5):414–422. doi: 10.1016/j.cosust.2011.07.008.
  • Dijkstra J, Van Zijderveld SM, Apajalahti JA, Bannink A, Gerrits WJJ, Newbold JR, Perdok HB, Berends H. 2011. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim Feed Sci Technol. 166–167:590–595. doi: 10.1016/j.anifeedsci.2011.04.042.
  • Engelke SW, Daş G, Derno M, Tuchscherer A, Wimmers K, Rychlik M, Kienberger H, Berg W, Kuhla B, Metges CC. 2019. Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed. J Dairy Sci. 102(2):1788–1802. doi: 10.3168/jds.2018-14911.
  • FAOSTAT. 2018. FAO statistical data base. Rome, Italy: FAOSTAT.
  • Fuertes JA, Gonzalo C, Carriedo JA, San Primitivo F. 1998. Parameters of test day milk yield and milk components for dairy ewes. J Dairy Sci. 81(5):1300–1307. doi: 10.3168/jds.S0022-0302(98)75692-9.
  • Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. 2012. Variation among individual dairy cows in methane measurements made on farm during milking. J Dairy Sci. 95(6):3181–3189. doi: 10.3168/jds.2011-4606.
  • Ghiasi H, Sitkowska B, Piwczyński D, Kolenda M. 2022. Genetic parameters for methane emissions using indirect prediction of methane and its association with milk and milk composition traits. Animals. 12(16):2073. doi: 10.3390/ani12162073.
  • Haile-Mariam M, Pryce JE. 2017. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. J Dairy Sci. 100(5):3754–3766. doi: 10.3168/jds.2016-11952.
  • Hammond KJ, Crompton LA, Bannink A, Dijkstra J, Yáñez-Ruiz DR, O’Kiely P, Kebreab E, Eugène MA, Yu Z, Shingfield KJ, et al. 2016. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim Feed Sci Technol. 219:13–30. doi: 10.1016/j.anifeedsci.2016.05.018.
  • Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, et al. 2013. Special topics—mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 91(11):5045–5069. doi: 10.2527/jas.2013-6583.
  • IPCC. 2019. In: Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P, Federici S, editors. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Volume 4: Agriculture, Forestry and Other Land Use (AFOLU), Chapter 10: Emission from Livestock and Manure Management. Switzerland: IPCC.
  • Kandel PB, Vanrobays ML, Vanlierde A, Dehareng F, Froidmont E, Gengler N, Soyeurt H. 2017. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. J Dairy Sci. 100(7):5578–5591. doi: 10.3168/jds.2016-11954.
  • Kaylegian KE, Dwyer DA, Lynch JM, Bauman DE, Fleming JR, Barbano DM. 2009. Impact of fatty acid composition on the accuracy of mid-infrared fat analysis of farm milks. J Dairy Sci. 92(6):2502–2513. doi: 10.3168/jds.2008-1911.
  • Knight TW, Molano G, Clark H, Cavanagh A. 2008. Methane emissions from weaned lambs measured at 13, 17, 25 and 35 weeks of age compared with mature ewes consuming a fresh forage diet. Aust J Exp Agric. 48(2):240–243. doi: 10.1071/EA07258.
  • Kumar S, Choudhury PK, Carro MD, Griffith GW, Dagar SS, Puniya M, Calabro S, Ravella SR, Dhewa T, Upadhyay RC, et al. 2014. New aspects and strategies for methane mitigation from ruminants. Appl Microbiol Biotechnol. 98(1):31–44. doi: 10.1007/s00253-013-5365-0.
  • Lassen J, Løvendahl P. 2013. Heritability for enteric methane emission from Danish Holstein cows using a non-invasive FTIR method. Adv Anim Biosci. 4:280.
  • Lassen J, Poulsen NA, Larsen MK, Buitenhuis AJ. 2016. Genetic and genomic relationship between methane production measured in breath and fatty acid content in milk samples from Danish Holsteins. Anim Prod Sci. 56(3):298–303. doi: 10.1071/AN15489.
  • Manzanilla-Pech CIV, Gordo DM, Difford GF, Pryce JE, Schenkel F, Wegmann S, Miglior F, Chud TC, Moate PJ, Williams SRO, et al. 2021. Breeding for reduced methane emission and feed-efficient Holstein cows: an international response. J Dairy Sci. 104(8):8983–9001. doi: 10.3168/jds.2020-19889.
  • Mills JAN, Kebreab E, Yates CM, Crompton LA, Cammell SB, Dhanoa MS, Agnew RE, France J. 2003. Alternative approaches to predicting methane emissions from dairy cows. J Anim Sci. 81(12):3141–3150. doi: 10.2527/2003.81123141x.
  • Misztal I, Tsuruta S, Lourenco DAL, Aguilar I, Legarra A, Vitezica Z. 2014. Manual for BLUPF90 family of programs. University of Georgia, Athens, USA.
  • Moraes LE, Strathe AB, Fadel JG, Casper DP, Kebreab E. 2014. Prediction of enteric methane emissions from cattle. Glob Chang Biol. 20(7):2140–2148. doi: 10.1111/gcb.12471.
  • Muetzel S, Clark H. 2015. Methane emissions from sheep fed fresh pasture. N Z J Agric Res. 58(4):472–489. doi: 10.1080/00288233.2015.1090460.
  • Niu M, Kebreab E, Hristov AN, Oh J, Arndt C, Bannink A, Bayat AR, Brito AF, Boland T, Casper D, et al. 2018. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob Chang Biol. 24(8):3368–3389. doi: 10.1111/gcb.14094.
  • Nudda A, Battacone G, Boaventura Neto O, Cannas A, Francesconi AHD, Atzori AS, Pulina G. 2014. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev Bras Zootec. 43(8):445–456. doi: 10.1590/S1516-35982014000800008.
  • Nudda A, Correddu F, Cesarani A, Pulina G, Battacone G. 2021. Functional odd-and branched-chain fatty acid in sheep and goat milk and cheeses. Dairy. 2(1):79–89. doi: 10.3390/dairy2010008.
  • Patra AK. 2016. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front Vet Sci. 3:39. doi: 10.3389/fvets.2016.00039.
  • Patra AK, Lalhriatpuii M. 2016. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric Ecosyst Environ. 215:89–99. doi: 10.1016/j.agee.2015.09.018.
  • Pinares-Patiño CS, Hickey SM, Young EA, Dodds KG, MacLean S, Molano G, Sandoval E, Kjestrup H, Harland R, Hunt C, et al. 2013. Heritability estimates of methane emissions from sheep. Animal. 7(Suppl. 2):316–321. doi: 10.1017/S1751731113000864.
  • Pinares-Patiño CS, McEwan JC, Dodds KG, Cárdenas EA, Hegarty RS, Koolaard JP, Clark H. 2011. Repeatability of methane emissions from sheep. Anim Feed Sci Technol. 166–167:210–218. doi: 10.1016/j.anifeedsci.2011.04.068.
  • Pocrnic I, Lourenco DAL, Bradford HL, Chen CY, Misztal I. 2017. Impact of pedigree depth on convergence of single-step genomic BLUP in a purebred swine population. J Anim Sci. 95(8):3391–3395.
  • Ramin M, Huhtanen P. 2013. Development of equations for predicting methane emissions from ruminants. J Dairy Sci. 96(4):2476–2493. doi: 10.3168/jds.2012-6095.
  • Requena F, Peña F, Agüera E, Marín AM. 2020. A meta-analytic approach to predict methane emissions from dairy goats using milk fatty acid profile. Sustainability. 12(12):4834. doi: 10.3390/su12124834.
  • Richardson CM, Nguyen TTT, Abdelsayed M, Moate PJ, Williams SRO, Chud TCS, Schenkel FS, Goddard ME, van den Berg I, Cocks BG, et al. 2021. Genetic parameters for methane emission traits in Australian dairy cows. J Dairy Sci. 104(1):539–549. doi: 10.3168/jds.2020-18565.
  • Saborío-Montero A, Gutiérrez-Rivas M, Goiri I, Atxaerandio R, García-Rodriguez A, López-Paredes J, Jiménez-Montero JA, González-Recio O. 2022. Rumen eukaryotes are the main phenotypic risk factors for larger methane emissions in dairy cattle. Livest Sci. 263:105023. doi: 10.1016/j.livsci.2022.105023.
  • Sejian V, Lal R, Lakritz J, Ezeji T. 2011. Measurement and prediction of enteric methane emission. Int J Biometeorol. 55(1):1–16. doi: 10.1007/s00484-010-0356-7.
  • Soyeurt H, Dehareng F, Gengler N, McParland S, Wall E, Berry DP, Coffey M, Dardenne P. 2011. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J Dairy Sci. 94(4):1657–1667. doi: 10.3168/jds.2010-3408.
  • United Nations Environment Programme and Climate and Clean Air Coalition. 2021. Global methane assessment: benefits and costs of mitigating methane emissions. Nairobi: United Nations Environment Programme; [accessed 2022 Mar 14]. https://wedocs.unep.org/bitstream/handle/20.500.11822/35917/GMA:ES.pdf.
  • Van Engelen S, Bovenhuis H, Dijkstra J, Van Arendonk JAM, Visker MHPW. 2015. Genetic study of methane production predicted from milk fat composition in dairy cows. J Dairy Sci. 98(11):8223–8226. doi: 10.3168/jds.2014-8989.
  • Van Gastelen S, Antunes-Fernandes EC, Hettinga KA, Dijkstra J. 2017. Relationships between methane emission of Holstein Friesian dairy cows and fatty acids, volatile metabolites and non-volatile metabolites in milk. Animal. 11(9):1539–1548. doi: 10.1017/S1751731117000295.
  • Van Gastelen S, Antunes-Fernandes EC, Hettinga KA, Dijkstra J. 2018. The relationship between milk metabolome and methane emission of Holstein Friesian dairy cows: metabolic interpretation and prediction potential. J Dairy Sci. 101(3):2110–2126. doi: 10.3168/jds.2017-13334.
  • Van Gastelen S, Mollenhorst H, Antunes-Fernandes EC, Hettinga KA, van Burgsteden GG, Dijkstra J, Rademaker JLW. 2018. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles. J Dairy Sci. 101(6):5582–5598. doi: 10.3168/jds.2017-13052.
  • Van Lingen HJ, Crompton LA, Hendriks WH, Reynolds CK, Dijkstra J. 2014. Meta-analysis of relationships between enteric methane yield and milk fatty acid profile in dairy cattle. J Dairy Sci. 97(11):7115–7132. doi: 10.3168/jds.2014-8268.
  • Vermorel M, Jouany JP, Eugène M, Sauvant D, Noblet J, Dourmad JY. 2008. Evaluation quantitative des émissions de méthane entérique par les animaux d’élevage en 2007 en France. INRA Prod Anim. 21:403–418.