495
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Maedi Visna virus infection and TMEM154 genotypes in Valle del Belìce sheep breed

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 754-759 | Received 19 May 2023, Accepted 27 Jul 2023, Published online: 09 Aug 2023

References

  • Ameen PSM, Karapinar Z. 2018. Seroprevalence of Visna-Maedi virus (VMV) and border disease virus (BDV) in Van province and around. Arq Bras Med Vet Zootec. 70(4):1029–1035. doi: 10.1590/1678-4162-10005.
  • Arcangeli C, Lucarelli D, Torricelli M, Sebastiani C, Ciullo M, Pellegrini C, Felici A, Costarelli S, Giammarioli M, Feliziani F. 2021. First survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 genes in sheep reared in Italy and their association with resistance to SRLVs infection. Viruses. 13:1290. doi: 10.3390/v13071290.
  • Azkur AK, Gazyagcis S, Aslan ME. 2011. Serological and epidemiological investigation of bluetongue, Maedi-Visna and caprine arthritis-encephalitis viruses in small ruminant in Kirikkale District in Turkey. Kafkas Univ Vet Fak Derg. 17:803–808.
  • Blacklaws BA, Berriatua E, Torsteinsdottir S, Watt NJ, De Andres D, Klein D, Harkiss GD. 2004. Transmission of small ruminant lentiviruses. Vet Microbiol. 101(3):199–208. doi: 10.1016/j.vetmic.2004.04.006.
  • Clawson ML, Redden R, Schuller G, Heaton MP, Workman A, Chitko-McKown CG, Smith TP, Leymaster KA. 2015. Genetic subgroup of small ruminant lentiviruses that infects sheep homozygous for TMEM154 frameshift deletion mutation A4D53. Vet Res. 46:22. doi: 10.1186/s13567-015-0162-7.
  • Gezer T, Akyüz E, Gökce G. 2021. Investigation of seroprevalence of Maedi-Visna infection in some sheep flocks in Kars Province, Turkey. Dicle Üniv Vet Fakültesi Dergisi. 14(1):48–51. doi: 10.47027/duvetfd.881430.
  • Heaton MP, Clawson M, Chitko-Mckown CG, Leymaster KA, Smith TPL, Harhay G, White SN, Herrmann-Hoesing LM, Mousel MR, Lewis GS, et al. 2012. Reduced lentivirus susceptibility in sheep with TMEM154 mutations. PLoS Genet. 8(1):e1002467. doi: 10.1371/journal.pgen.1002467.
  • Heaton MP, Kalbfleisch TS, Petrik DT, Simpson B, Kijas JW, Clawson ML, Chitko-McKown CG, Harhay G, Leymaster KA; The International Sheep Genomics Consortium. 2013. Genetic testing for TMEM154 mutations associated with lentivirus susceptibility in sheep. PLoS One. 8(2):e55490. doi: 10.1371/journal.pone.0055490.
  • Herrmann-Hoesing L, White SN, Mousel MR, Lewis GS, Knowles DP. 2008. Ovine progressive pneumonia provirus levels associate with breed and Ovar-DRB1. Immunogenetics. 60(12):749–758. doi: 10.1007/s00251-008-0328-9.
  • Jones S. 2014. Impact of Maedi-Visna on sheep breeding flocks [PhD thesis]. University of Nottingham.
  • Junkuszew A, Dudko P, Bojar W, Olech M, Osiński Z, Gruszecki TM, Kania MG, Kuźmak J, Czerski G. 2016. Risk factors associated with small ruminant lentivirus infection in eastern Poland sheep flocks. Prev Vet Med. 127:44–49. doi: 10.1016/j.prevetmed.2016.03.011.
  • Lago N, López C, Panadero R, Cienfuegos J, Pato A, Prieto P, Díaz P, Mourazos N, Fernández G. 2012. Seroprevalence and risk factors associated with Visna/Maedi virus in semi-intensive lambproducing flocks in northwestern Spain. Prev Vet Med. 103(2-3):163–169. doi: 10.1016/j.prevetmed.2011.09.019.
  • Larruskain A, Minguijón E, García-Etxebarria K, Moreno B, Arostegui I, Juste RA, Jugo BM. 2010. MHC class II DRB1 gene polymorphism in the pathogenesis of Maedi–Visna and pulmonary adenocarcinoma viral diseases in sheep. Immunogenetics. 62(2):75–83. doi: 10.1007/s00251-009-0419-2.
  • Minguijón E, Reina R, Pérez M, Polledo L, Villoria M, Ramírez H, Leginagoikoa I, Badiola JJ, García-Marín JF, de Andrés D, et al. 2015. Small ruminant lentivirus infections and diseases. Vet Microbiol. 181(1-2):75–89. doi: 10.1016/j.vetmic.2015.08.007.
  • Molaee V, Eltanany M, Lühken G. 2018. First survey on association of TMEM154 and CCR5 variants with serological Maedi-Visna status of sheep in German flocks. Vet Res. 49(1):36. doi: 10.1186/s13567-018-0533-y.
  • Molaee V, Otarod V, Abdollahi D, Lühken G. 2019. Lentivirus susceptibility in Iranian and German sheep assessed by determination of TMEM154 E35K. Animals. 9(9):685. doi: 10.3390/ani9090685.
  • Moretti R, Sartore S, Colitti B, Profiti M, Chessa S, Rosati S, Sacchi P. 2022. Susceptibility of different TMEM154 genotypes in three Italian sheep breeds infected by different SRLV genotypes. Vet Res. 53(1):60. doi: 10.1186/s13567-022-01079-0.
  • Murphy TW, Chitko-McKown CG, Heaton MP, Freking BA. 2021. Effect of TMEM154 E35K variant (haplotypes 1 and 3) on the incidence of ovine lentivirus infection and ewe productivity during lifetime exposure. J Anim Sci. 99:skab304. doi: 10.1093/jas/skab304.
  • OIE. 2018. Caprine arthritis/encephalitis and Maedi-Visna. In: Manual of diagnostic tests and vaccines for terrestrial animals (terrestrial manual). Paris, France: World Organization for Animal Health, p. 1420–1429.
  • Pavlak M, Vlahović K, Cvitković D, Mihelić D, Kilvain I, Udiljak Ž, Andreanszky T. 2022. Seroprevalence and risk factors associated with Maedi Visna virus in sheep population in southwestern Croatia. Vet Arh. 92(3):277–289. doi: 10.24099/vet.arhiv.1333.
  • Pérez M, Biescas E, De Andrés X, Leginagoikoa I, Salazar E, Berriatua E, Reina R, Bolea R, De Andrés D, Juste, et al. 2010. Visna/Maedi virus serology in sheep: survey, risk factors and implementation of a successful control programme in Aragón (Spain). Vet J. 186(2):221–225. doi: 10.1016/j.tvjl.2009.07.031.
  • Peterson K, Brinkhof J, Houwers D, Colenbrander B, Gadella B. 2008. Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants. Theriogenology. 69(4):433–442. doi: 10.1016/j.theriogenology.2007.10.013.
  • Preziuso S, Renzoni G, Allen TE, Taccini E, Rossi G, Demartini JC, Braca G. 2004. Colostral transmission of maedi visna virus: sites of viral entry in lambs born from experimentally infected ewes. Vet Microbiol. 104(3-4):157–164. doi: 10.1016/j.vetmic.2004.09.010.
  • Pritchard GC, Dawson M. 2000. Maedi-Visna. In: Martin WB, Aitken ID, editors. Diseases of sheep, 3rd ed. Oxford: Blackwell Science; p. 187–191.
  • Ramírez H, Echeverría I, Benito AA, Glaria I, Benavides J, Pérez V, Reina R. 2021. Accurate diagnosis of small ruminant lentivirus infection is needed for selection of resistant sheep through TMEM154 e35k genotyping. Pathogens. 10(1):83. doi: 10.3390/pathogens10010083.
  • Rodrigues CS, de Faria DA, Lacerda TSA, Paiva SR, Caetano AR, Blackburn H, McManus C. 2023. Lentivirus susceptibility in Brazilian and US sheep with TMEM154 mutations. Genes. 14(1):70. doi: 10.3390/genes14010070.
  • Sarafidou T, Stamatis C, Kalozoumi G, Spyrou V, Fthenakis GC, Billinis C, Mamuris Z. 2013. Toll Like Receptor 9 (TLR9) polymorphism G520R in sheep is associated with seropositivity for small ruminant lentivirus. PLoS One. 8(5):e63901. doi: 10.1371/journal.pone.0063901.
  • Sigurdsson B, Grimsson H, Palsson PA. 1952. Maedi, a chronic progressive infection of sheep lungs. J Infect Dis. 90(3):233–241. doi: 10.1093/infdis/90.3.233.
  • Straub OC. 2004. Maedi-Visna virus infection in sheep. History and present knowledge. Comp Immunol Microbiol Infec dis. 27(1):1–5. doi: 10.1016/S0147-9571(02)00078-4.
  • Tumino S, Tolone M, Galluzzo P, Migliore S, Sechi T, Bordonaro S, Puleio R, Carta A, Loria GR. 2022. Alternative molecular tools for the fight against infectious diseases of small ruminants: native Sicilian sheep breeds and Maedi-Visna genetic susceptibility. Animals. 12:1630.
  • White SN, Mousel MR, Herrmann-Hoesing LM, Reynolds JO, Leymaster KA, Neibergs HL, Lewis GS, Knowles, DP. 2012. Genome-wide association identifies multiple genomic regions associated with susceptibility to and control of ovine lentivirus. PLoS One. 7(10):e47829. doi: 10.1371/journal.pone.0047829.
  • White SN, Mousel MR, Reynolds JO, Herrmann-Hoesing LM, Knowles DP. 2014. Deletion variant near ZNF389 is associated with control of ovine lentivirus in multiple sheep flocks. Anim Genet. 45(2):297–300. doi: 10.1111/age.12107.
  • White SN, Mousel MR, Reynolds JO, Lewis GS, Herrmann-Hoesing LM. 2009. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus. Anim Genet. 40(5):583–589. doi: 10.1111/j.1365-2052.2009.01882.x.
  • Yaman Y, Keleş M, Aymaz R, Sevim S, Sezenler T, Önaldı AT, Kaptan C, Başkurt A, Koncagül S, Öner Y, et al. 2019. Association of TMEM154 variants with Visna/Maedi virus infection in Turkish sheep. Small Ruminant Res. 177:61–67. doi: 10.1016/j.smallrumres.2019.06.006.
  • Yeh FC, Boyle, TJB. 1997. Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian J Bot. 129:157.