523
Views
0
CrossRef citations to date
0
Altmetric
Animal Genetics and Breeding

Identifying key DNA methylation sites and their cis-methylation quantitative loci for intramuscular fatty acid traits using genome and methylome data in Yorkshire pigs

, , , , , , , , , , & show all
Pages 829-840 | Received 12 Mar 2023, Accepted 07 Aug 2023, Published online: 25 Aug 2023

References

  • Akalin A, Franke V, Vlahoviček K, Mason CE, Schübeler D. 2015. Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinformatics. 31(7):1127–1129. doi: 10.1093/bioinformatics/btu775.
  • Battram T, Gaunt TR, Relton CL, Timpson NJ, Hemani G. 2022. A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits. Nat Commun. 13(1):7816. doi: 10.1038/s41467-022-35037-3.
  • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120. doi: 10.1093/bioinformatics/btu170.
  • Cameron ND, Enser M, Nute GR, Whittington FM, Penman JC, Fisken AC, Perry AM, Wood JD. 2000. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci. 55(2):187–195. doi: 10.1016/s0309-1740(99)00142-4.
  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 43(5):491–498. doi: 10.1038/ng.806.
  • Gomez-Alonso MDC, Kretschmer A, Wilson R, Pfeiffer L, Karhunen V, Seppälä I, Zhang W, Mittelstraß K, Wahl S, Matias-Garcia PR, et al. 2021. DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures. Clin Epigenetics. 13(1):7. doi: 10.1186/s13148-020-00957-8.
  • Gong J, Wan H, Mei S, Ruan H, Zhang Z, Liu C, Guo AY, Diao L, Miao X, Han L. 2019. Pancan-meQTL: a database to systematically evaluate the effects of genetic variants on methylation in human cancer. Nucleic Acids Res. 47(D1):D1066–d1072. doi: 10.1093/nar/gky814.
  • Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, Busche S, Yuan W, Nisbet J, Sekowska M, et al. 2013. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet. 93(5):876–890. doi: 10.1016/j.ajhg.2013.10.004.
  • Guo T, Ren J, Yang K, Ma J, Zhang Z, Huang L. 2009. Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2 population. Anim Genet. 40(2):185–191. doi: 10.1111/j.1365-2052.2008.01819.x.
  • Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. 2020. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. 6:e251. doi: 10.7717/peerj-cs.251.
  • He Z, Zhang R, Jiang F, Zhang H, Zhao A, Xu B, Jin L, Wang T, Jia W, Jia W, et al. 2018. FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin Epigenetics. 10(1):113. doi: 10.1186/s13148-018-0545-5.
  • Huan T, Joehanes R, Song C, Peng F, Guo Y, Mendelson M, Yao C, Liu C, Ma J, Richard M, et al. 2019. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat Commun. 10(1):4267. doi: 10.1038/s41467-019-12228-z.
  • Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D, Alexsson A, Nordmark G, Eloranta ML, Rantapää-Dahlqvist S, Bengtsson AA, Jönsen A, Padyukov L, et al. 2018. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis. 77(5):736–743. doi: 10.1136/annrheumdis-2017-212379.
  • Kremmyda LS, Tvrzicka E, Stankova B, Zak A. 2011. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 155(3):195–218. doi: 10.5507/bp.2011.052.
  • Krueger F, Andrews SR 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics (Oxford, England) 27:1571–1572.doi:10.1093/bioinformatics/btr167.
  • Lin D, Chen J, Perrone-Bizzozero N, Bustillo JR, Du Y, Calhoun VD, Liu J. 2018. Characterization of cross-tissue genetic-epigenetic effects and their patterns in schizophrenia. Genome Med. 10(1):13. doi: 10.1186/s13073-018-0519-4.
  • Luo J, Shen L, Gan M, Jiang A, Chen L, Ma J, Jin L, Liu Y, Tang G, Jiang Y, et al. 2021. Profiling of skeletal muscle tissue for long non-coding RNAs related to muscle metabolism in the QingYu pig at the growth inflection point. Anim Biosci. 34(8):1309–1320. doi: 10.5713/ajas.20.0429.
  • Maldonado MBC, de Rezende Neto NB, Nagamatsu ST, Carazzolle MF, Hoff JL, Whitacre LK, Schnabel RD, Behura SK, McKay SD, Taylor JF, et al. 2019. Identification of bovine CpG SNPs as potential targets for epigenetic regulation via DNA methylation. PLoS One. 14(9):e0222329. doi: 10.1371/journal.pone.0222329.
  • Muñoz M, Rodríguez MC, Alves E, Folch JM, Ibañez-Escriche N, Silió L, Fernández AI. 2013. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics. 14(1):845. doi: 10.1186/1471-2164-14-845.
  • Nii M, Hayashi T, Tani F, Niki A, Mori N, Fujishima‐Kanaya N, Komatsu M, Aikawa K, Awata T, Mikawa S. 2006. Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar × Large White intercross. Anim Genet. 37(4):342–347. doi: 10.1111/j.1365-2052.2006.01485.x.
  • Orozco LD, Rubbi L, Martin LJ, Fang F, Hormozdiari F, Che N, Smith AD, Lusis AJ, Pellegrini M. 2014. Intergenerational genomic DNA methylation patterns in mouse hybrid strains. Genome Biol. 15(5):R68. doi: 10.1186/gb-2014-15-5-r68.
  • Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX. 2007. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell. 19(11):3692–3704. doi: 10.1105/tpc.107.054437.
  • Ros-Freixedes R, Gol S, Pena RN, Tor M, Ibáñez-Escriche N, Dekkers JC, Estany J. 2016. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in Duroc pigs. PLoS One. 11(3):e0152496. doi: 10.1371/journal.pone.0152496.
  • Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito T, Sakuma H, Miyashita S, Arata S, Suzuki K. 2017. Genome-wide association studies reveal additional related loci for fatty acid composition in a Duroc pig multigenerational population. Anim Sci J. 88(10):1482–1490. doi: 10.1111/asj.12793.
  • Schulz H, Ruppert AK, Herms S, Wolf C, Mirza-Schreiber N, Stegle O, Czamara D, Forstner AJ, Sivalingam S, Schoch S, et al. 2017. Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nat Commun. 8(1):1511. doi: 10.1038/s41467-017-01818-4.
  • Shoemaker R, Deng J, Wang W, Zhang K. 2010. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 20(7):883–889. doi: 10.1101/gr.104695.109.
  • Triantaphyllopoulos KA, Ikonomopoulos I, Bannister AJ. 2016. Epigenetics and inheritance of phenotype variation in livestock. Epigen Chrom. 9:31. doi: 10.1186/s13072-016-0081-5.
  • Turner SDJB. 2014. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots.
  • Tvrzicka E, Kremmyda LS, Stankova B, Zak A. 2011. Fatty acids as biocompounds: their role in human metabolism, health and disease–a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 155(2):117–130. doi: 10.5507/bp.2011.038.
  • Verma M. 2012. Epigenome-Wide Association Studies (EWAS) in Cancer. Curr Genomics. 13(4):308–313. doi: 10.2174/138920212800793294.
  • Viterbo VS, Lopez BIM, Kang H, Kim H, Song CW, Seo KS. 2018. Genome wide association study of fatty acid composition in Duroc swine. Asian-Australas J Anim Sci. 31(8):1127–1133. doi: 10.5713/ajas.17.0779.
  • Wang M, Ibeagha-Awemu EM. 2020. Impacts of epigenetic processes on the health and productivity of livestock. Front Genet. 11:613636. doi: 10.3389/fgene.2020.613636.
  • Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM. 2008. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci. 78(4):343–358. doi: 10.1016/j.meatsci.2007.07.019.
  • Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M. 2004. Effects of fatty acids on meat quality: a review. Meat Sci. 66(1):21–32. doi: 10.1016/S0309-1740(03)00022-6.
  • Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, Mason D, Chatzi L, Basterrechea M, Llop S, et al. 2018. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 6(5):379–388. doi: 10.1016/S2213-2600(18)30052-3.
  • Zhang W, Zhang J, Cui L, Ma J, Chen C, Ai H, Xie X, Li L, Xiao S, Huang L, et al. 2016. Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genet Sel Evol. 48:5. doi: 10.1186/s12711-016-0184-2.
  • Zhang Y, Zhang J, Gong H, Cui L, Zhang W, Ma J, Chen C, Ai H, Xiao S, Huang L, et al. 2019. Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on GWAS data in six pig populations. Meat Sci. 150:47–55. doi: 10.1016/j.meatsci.2018.12.008.
  • Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, Absher DM, Arnett DK. 2013. SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics. 8(8):802–806. doi: 10.4161/epi.25501.