907
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Proteomics approaches – their potential for answering complex questions in meat science research

&
Pages 911-924 | Received 10 Jul 2023, Accepted 10 Aug 2023, Published online: 22 Aug 2023

References

  • Alderton AL, Faustman C, Liebler DC, Hill DW. 2003. Induction of redox instability of bovine myoglobin by adduction with 4-hydroxy-2-nonenal. Biochemistry. 42(15):4398–4405. doi: 10.1021/bi0271695.
  • Anderson MJ, Lonergan SM, Fedler CA, Prusa KJ, Binning JM, Huff-Lonergan E. 2012. Profile of biochemical traits influencing tenderness of muscles from the beef round. Meat Sci. 91(3):247–254. doi: 10.1016/j.meatsci.2012.01.022.
  • Anderson MJ, Lonergan SM, Huff-Lonergan E. 2012. Myosin light chain 1 release from myofibrillar fraction during postmortem aging is a potential indicator of proteolysis and tenderness of beef. Meat Sci. 90(2):345–351. doi: 10.1016/j.meatsci.2011.07.021.
  • Anderson MJ, Lonergan SM, Huff-Lonergan E. 2014. Differences in phosphorylation of phosphoglucomutase 1 in beef steaks from the longissimus dorsi with high or low star probe values. Meat Sci. 96(1):379–384. doi: 10.1016/j.meatsci.2013.07.017.
  • Canto AC, Suman SP, Nair MN, Li S, Rentfrow G, Beach CM, Silva TJ, Wheeler TL, Shackelford SD, Grayson A, et al. 2015. Differential abundance of sarcoplasmic proteome explains animal effect on beef Longissimus lumborum color stability. Meat Sci. 102:90–98. doi: 10.1016/j.meatsci.2014.11.011.
  • Carbonara K, Andonovski M, Coorssen JR. 2021. Proteomes are of proteoforms: embracing the complexity. Proteomes. 9(3):1–38. doi: 10.3390/proteomes9030038.
  • Carlin KR, Huff-Lonergan E, Rowe LJ, Lonergan SM. 2006. Effect of oxidation, pH, and ionic strength on calpastatin inhibition of mu- and m-calpain. J Anim Sci. 84(4):925–937. doi: 10.2527/2006.844925x.
  • Carlson KB, Prusa KJ, Fedler CA, Steadham EM, Huff-Lonergan E, Lonergan SM. 2017. Proteomic features linked to tenderness of aged pork loins. J Anim Sci. 95(6):2533–2546. doi: 10.2527/jas.2016.1122.
  • Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS. 2023. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports. 1–17. doi: 10.1111/sms.14334.
  • Chauhan SS, England EM. 2018. Postmortem glycolysis and glycogenolysis: insights from species comparisons. Meat Sci. 144:118–126. doi: 10.1016/j.meatsci.2018.06.021.
  • Chen L, Li Z, Everaert N, Lametsch R, Zhang D. 2019. Quantitative phosphoproteomic analysis of ovine muscle with different postmortem glycolytic rates. Food Chem. 280:203–209. doi: 10.1016/j.foodchem.2018.12.056.
  • Chen Y, Lonergan S, Lim KS, Cheng J, Putz AM, Dyck MK, Canada P, Fortin F, Harding JCS, Plastow GS, et al. 2023. Plasma protein levels of young healthy pigs as indicators of disease resilience. J Anim Sci. 101:101. doi: 10.1093/jas/skad014.
  • Cobley JN. 2023. Oxiforms: unique cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms: like how mixing primary colours creates new shades, cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms called oxiforms. Bioessays. 45(7):e2200248. doi: 10.1002/bies.202200248.
  • Di Luca A, Elia G, Hamill R, Mullen AM. 2013. 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics. 13(9):1528–1544. doi: 10.1002/pmic.201200145.
  • Faria SS, Morris CF, Silva AR, Fonseca MP, Forget P, Castro MS, Fontes W. 2017. A Timely Shift from Shotgun to Targeted Proteomics and How It Can Be Groundbreaking for Cancer Research. Front Oncol. 7:13. doi: 10.3389/fonc.2017.00013.
  • Faustman C, Liebler DC, McClure TD, Sun Q. 1999. Alpha,beta-unsaturated aldehydes accelerate oxymyoglobin oxidation. J Agric Food Chem. 47(8):3140–3144. doi: 10.1021/jf990016c.
  • Foster MW, Hess DT, Stamler JS. 2009. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 15(9):391–404. doi: 10.1016/j.molmed.2009.06.007.
  • Gagaoua M, Bonnet M, De Koning L, Picard B. 2018a. Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: the case of meat color from Charolais breed. Meat Sci. 145:308–319. doi: 10.1016/j.meatsci.2018.06.039.
  • Gagaoua M, Bonnet M, Ellies-Oury MP, De Koning L, Picard B. 2018b. Reverse phase protein arrays for the identification/validation of biomarkers of beef texture and their use for early classification of carcasses. Food Chem. 250:245–252. doi: 10.1016/j.foodchem.2018.01.070.
  • Gagaoua M, Monteils V, Couvreur S, Picard B. 2017. Identification of biomarkers associated with the rearing practices, carcass characteristics, and beef quality: an integrative approach. J Agric Food Chem. 65(37):8264–8278. doi: 10.1021/acs.jafc.7b03239.
  • Gagaoua M, Terlouw EMC, Mullen AM, Franco D, Warner RD, Lorenzo JM, Purslow PP, Gerrard D, Hopkins DL, Troy D, et al. 2021a. Molecular signatures of beef tenderness: underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci. 172:108311. doi: 10.1016/j.meatsci.2020.108311.
  • Gagaoua M, Warner RD, Purslow P, Ramanathan R, Mullen AM, Lopez-Pedrouso M, Franco D, Lorenzo JM, Tomasevic I, Picard B, et al. 2021b. Dark-cutting beef: a brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci. 181:108611. doi: 10.1016/j.meatsci.2021.108611.
  • Geesink GH, Koohmaraie M. 1999. Effect of calpastatin on degradation of myofibrillar proteins by mu-calpain under postmortem conditions. J Anim Sci. 77(10):2685–2692. doi: 10.2527/1999.77102685x.
  • Geesink GH, Kuchay S, Chishti AH, Koohmaraie M. 2006. Micro-calpain is essential for postmortem proteolysis of muscle proteins. J Anim Sci. 84(10):2834–2840. doi: 10.2527/jas.2006-122.
  • Giansanti P, Tsiatsiani L, Low TY, Heck AJ. 2016. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc. 11(5):993–1006. doi: 10.1038/nprot.2016.057.
  • Grubbs JK, Tuggle CK, Dekkers JC, Boddicker NJ, Nguyen YT, Huff-Lonergan E, Nettleton D, Lonergan SM. 2015. Investigation of the efficacy of albumin removal procedures on porcine serum proteome profile. J Anim Sci. 93(4):1592–1598. doi: 10.2527/jas.2014-8559.
  • Guelker MR, Haneklaus AN, Brooks JC, Carr CC, Delmore RJ, Jr., Griffin DB, Hale DS, Harris KB, Mafi GG, Johnson DD, et al. 2013. National Beef Tenderness Survey-2010: warner-Bratzler shear force values and sensory panel ratings for beef steaks from United States retail and food service establishments. J Anim Sci. 91(2):1005–1014. doi: 10.2527/jas.2012-5785.
  • Harris SE, Huff-Lonergan E, Lonergan SM, Jones WR, Rankins D. 2001. Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. J Anim Sci. 79(3):666–677. doi: 10.2527/2001.793666x.
  • Hochmuth KG, Schulte MD, Messersmith EM, Huff-Lonergan E, Hansen SL. 2022. The influence of supplemental zinc and ractopamine hydrochloride on the performance and longissimus thoracis proteome of finishing beef steers. Meat Muscle Biol. 6(1):1–17. doi: 10.22175/mmb.14456.
  • Hou Q, Zhang CY, Zhang WG, Liu R, Tang H, Zhou GH. 2020. Role of protein S-nitrosylation in regulating beef tenderness. Food Chem. 306:125616. doi: 10.1016/j.foodchem.2019.125616.
  • Huang C, Hou C, Ijaz M, Yan T, Li X, Li Y, Zhang D. 2020. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: current trends and future prospects: a review. Trends Food Sci Technol. 105:416–432. doi: 10.1016/j.tifs.2020.09.030.
  • Huang H, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R. 2011. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics. 11(20):4063–4076. doi: 10.1002/pmic.201100173.
  • Huff Lonergan E, Zhang W, Lonergan SM. 2010. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat Sci. 86(1):184–195. doi: 10.1016/j.meatsci.2010.05.004.
  • Huff-Lonergan E, Lonergan S. 2005. Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71(1):194–204. doi: 10.1016/j.meatsci.2005.04.022.
  • Huff-Lonergan E, Mitsuhashi T, Beekman DD, Parrish FC, Jr., Olson DG, Robson RM. 1996. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J Anim Sci. 74(5):993–1008. doi: 10.2527/1996.745993x.
  • Johnson LG, Zhai C, Reever LM, Prusa KJ, Nair MN, Huff-Lonergan E, Lonergan SM. 2023. Characterizing the sarcoplasmic proteome of aged pork chops classified by purge loss. J Anim Sci.: 101:skad046. doi: 10.1093/jas/skad046.
  • Jungblut PR, Holzhutter HG, Apweiler R, Schluter H. 2008. The speciation of the proteome. Chem Cent J. 2:16. doi: 10.1186/1752-153X-2-16.
  • Kim YH, Huff-Lonergan E, Sebranek JG, Lonergan SM. 2010. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 85(4):759–767. doi: 10.1016/j.meatsci.2010.04.001.
  • Kiyimba F, Gagaoua M, Suman SP, Mafi GG, Ramanathan R. 2022. Bioinformatics: in-depth analyses of omics data in the field of muscle biology and meat biochemistry. Reference Module in Food Sciences. Amsterdam, The Netherlands: Elsevier.
  • Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. 1995. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J Anim Sci. 73(12):3596–3607. doi: 10.2527/1995.73123596x.
  • Koohmaraie M, Shackelford SD. 1991. Effect of calcium chloride infusion on the tenderness of lambs fed a beta-adrenergic agonist. J Anim Sci. 69(6):2463–2471. doi: 10.2527/1991.6962463x.
  • Koohmaraie M. 1992. The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie. 74(3):239–245. doi: 10.1016/0300-9084(92)90122-u.
  • Koohmaraie M. 1994. Muscle proteinases and meat aging. Meat Sci. 36(1–2):93–104. doi: 10.1016/0309-1740(94)90036-1.
  • Koohmaraie M. 1996. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci. 43S1:193–201. doi: 10.1016/0309-1740(96)00065-4.
  • Lametsch R, Karlsson A, Rosenvold K, Andersen HJ, Roepstorff P, Bendixen E. 2003. Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem. 51(24):6992–6997. doi: 10.1021/jf034083p.
  • Lametsch R, Larsen MR, Essen-Gustavsson B, Jensen-Waern M, Lundstrom K, Lindahl G. 2011. Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype. J Agric Food Chem. 59(21):11608–11615. doi: 10.1021/jf201936h.
  • Lametsch R, Lonergan S, Huff-Lonergan E. 2008. Disulfide bond within mu-calpain active site inhibits activity and autolysis. Biochim Biophys Acta. 1784(9):1215–1221. doi: 10.1016/j.bbapap.2008.04.018.
  • Lamri M, Della Malva A, Djenane D, Albenzio M, Gagaoua M. 2023a. First insights into the dynamic protein changes in goat Semitendinosus muscle during the post-mortem period using high-throughput proteomics. Meat Sci. 202:109207. doi: 10.1016/j.meatsci.2023.109207.
  • Lamri M, Della Malva A, Djenane D, Lopez-Pedrouso M, Franco D, Albenzio M, Lorenzo JM, Gagaoua M. 2023b. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J Proteomics. 278:104868. doi: 10.1016/j.jprot.2023.104868.
  • Leutert M, Menzel S, Braren R, Rissiek B, Hopp AK, Nowak K, Bisceglie L, Gehrig P, Li H, Zolkiewska A, et al. 2018. Proteomic characterization of the heart and skeletal muscle reveals widespread arginine ADP-ribosylation by the ARTC1 ectoenzyme. Cell Rep. 24(7):1916–1929 e1915. doi: 10.1016/j.celrep.2018.07.048.
  • Li X, Chen L, He F, Li M, Shen Q, Zhang D. 2017. A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness. J Sci Food Agric. 97(13):4571–4579. doi: 10.1002/jsfa.8326.
  • Li Z, Li M, Li X, Xin J, Wang Y, Shen QW, Zhang D. 2018. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling. Food Chem. 249:8–15. doi: 10.1016/j.foodchem.2017.12.047.
  • Liu JC, Dong SS, Shen H, Yang DY, Chen BB, Ma XY, Peng YR, Xiao HM, Deng HW. 2022. Multi-omics research in sarcopenia: current progress and future prospects. Ageing Res Rev. 76:101576. doi: 10.1016/j.arr.2022.101576.
  • Liu P, Zhang Z, Guo X, Zhu X, Mao X, Guo X, Deng X, Zhang J. 2021. mu-Calpain oxidation and proteolytic changes on myofibrillar proteins from Coregonus Peled in vitro. Food Chem. 361:130100. doi: 10.1016/j.foodchem.2021.130100.
  • Liu R, Lonergan S, Steadham E, Zhou G, Zhang W, Huff-Lonergan E. 2019. Effect of nitric oxide and calpastatin on the inhibition of micro-calpain activity, autolysis and proteolysis of myofibrillar proteins. Food Chem. 275:77–84. doi: 10.1016/j.foodchem.2018.09.104.
  • Liu R, Warner RD, Zhou G, Zhang W. 2018. Contribution of nitric oxide and protein S-nitrosylation to variation in fresh meat quality. Meat Sci. 144:135–148. doi: 10.1016/j.meatsci.2018.04.027.
  • Lonergan S, Huff-Lonergan E, Wiegand B, Kriese-Anderson L. 2001. Postmortem proteolysis and tenderization of top loin steaks from Brangus cattle. J Muscle Foods. 12(2):121–136. doi: 10.1111/j.1745-4573.2001.tb00304.x.
  • Lu W, Hou Q, Zhang J, Zhang W. 2023. Targeted energy metabolomics analysis of postmortem pork in an in vitro model as influenced by protein S-nitrosylation. Meat Sci. 197:109073. doi: 10.1016/j.meatsci.2022.109073.
  • Lynch MP, Faustman C. 2000. Effect of aldehyde lipid oxidation products on myoglobin. J Agric Food Chem. 48(3):600–604. doi: 10.1021/jf990732e.
  • Maddock KR, Huff-Lonergan E, Rowe LJ, Lonergan SM. 2005. Effect of pH and ionic strength on mu- and m-calpain inhibition by calpastatin. J Anim Sci. 83(6):1370–1376. doi: 10.2527/2005.8361370x.
  • Mancini RA, Hunt MC. 2005. Current research in meat color. Meat Sci. 71(1):100–121. doi: 10.1016/j.meatsci.2005.03.003.
  • Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. 2018. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform. 19(2):286–302. doi: 10.1093/bib/bbw114.
  • Marcus K, Lelong C, Rabilloud T. 2020. What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes. 8(3):1–26. doi: 10.3390/proteomes8030017.
  • Marouga R, David S, Hawkins E. 2005. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 382(3):669–678. doi: 10.1007/s00216-005-3126-3.
  • Matarneh SK, Silva SL, Gerrard DE. 2021. New insights in muscle biology that alter meat quality. Annu Rev Anim Biosci. 9:355–377. doi: 10.1146/annurev-animal-021419-083902.
  • Melby JA, Brown KA, Gregorich ZR, Roberts DS, Chapman EA, Ehlers LE, Gao Z, Larson EJ, Jin Y, Lopez JR, et al. 2023. High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms. Proc Natl Acad Sci U S A. 120(19):e2222081120. doi: 10.1073/pnas.2222081120.
  • Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. 2020. Top-down proteomics reveals myofilament proteoform heterogeneity among various rat skeletal muscle tissues. J Proteome Res. 19(1):446–454. doi: 10.1021/acs.jproteome.9b00623.
  • Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. 2021. Novel strategies to address the challenges in top-down proteomics. J Am Soc Mass Spectrom. 32(6):1278–1294. doi: 10.1021/jasms.1c00099.
  • Ohlendieck K. 2011. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle. 1(1):6. doi: 10.1186/2044-5040-1-6.
  • Picard B, Gagaoua M, Al-Jammas M, De Koning L, Valais A, Bonnet M. 2018. Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. PeerJ. 6:e4891. doi: 10.7717/peerj.4891.
  • Picard B, Gagaoua M. 2017. Chapter 11 - Proteomic investigations of beef tenderness. In: Colgrave ML, editor, Proteomics in food science: from farm to fork. Amsterdam, The Netherlands: Academic Press; p. 177–197.
  • Picard B, Gagaoua M. 2020. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: an overview of integrated studies. Food Res Int. 127:108739. doi: 10.1016/j.foodres.2019.108739.
  • Pogge DJ, Lonergan SM, Hansen SL. 2014. Influence of supplemental vitamin C on postmortem protein degradation and fatty acid profiles of the longissimus thoracis of steers fed varying concentrations of dietary sulfur. Meat Sci. 96(2):956–963. doi: 10.1016/j.meatsci.2013.08.031.
  • Purslow PP, Gagaoua M, Warner RD. 2021. Insights on meat quality from combining traditional studies and proteomics. Meat Sci. 174:108423. doi: 10.1016/j.meatsci.2020.108423.
  • Ramanathan R, Hunt MC, Mancini RA, Nair MN, Denzer ML, Suman SP, Mafi GG. 2020. Recent updates in meat color research: integrating traditional and high-throughput approaches. Meat Muscle Biol. 4(2):1–24. doi: 10.22175/mmb.9598.
  • Ramanathan R, Kiyimba F, Suman SP, Mafi GG. 2023. The potential of metabolomics in meat science: current applications, trends, and challenges. J Proteomics. 283–284:104926. doi: 10.1016/j.jprot.2023.104926.
  • Ramanathan R, Lambert LH, Nair MN, Morgan B, Feuz R, Mafi GG, Pfeiffer M. 2022. Economic loss, amount of beef discarded, natural resources wastage, and environmental impact due to beef discoloration. Meat Muscle Biol. 6(1):1–8. doi: 10.22175/mmb.13218.
  • Ramanathan R, Suman SP, Faustman C. 2020. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: a review. J Agric Food Chem. 68(46):12779–12787. doi: 10.1021/acs.jafc.9b08098.
  • Rauniyar N, Yates JR. 3rd. 2014. Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res. 13(12):5293–5309. doi: 10.1021/pr500880b.
  • Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E. 2004a. Influence of early postmortem protein oxidation on beef quality. J Anim Sci. 82(3):785–793. doi: 10.2527/2004.823785x.
  • Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E. 2004b. Oxidative environments decrease tenderization of beef steaks through inactivation of mu-calpain. J Anim Sci. 82(11):3254–3266. doi: 10.2527/2004.82113254x.
  • Schluter H, Apweiler R, Holzhutter HG, Jungblut PR. 2009. Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J. 3:11. doi: 10.1186/1752-153X-3-11.
  • Schulte MD, Hochmuth KG, Steadham EM, Lonergan SM, Hansen SL, Huff-Lonergan EJ. 2023. Early postmortem muscle proteome and metabolome of beef longissimus thoracis muscle classified by pH at 6 hours postmortem. J Proteomics. 271:104756. doi: 10.1016/j.jprot.2022.104756.
  • Schulte MD, Hochmuth KG, Steadham EM, Prusa KJ, Lonergan SM, Hansen SL, Huff-Lonergan EJ. 2021. The influence of supranutritional zinc and ractopamine hydrochloride supplementation on early postmortem pH decline and meat quality development of beef. Meat Muscle Biol. 5(1):1–15. doi: 10.22175/mmb.12250.
  • Schulte MD, Johnson LG, Zuber EA, Patterson BM, Outhouse AC, Fedler CA, Steadham E, King DA, Prusa KJ, Huff Lonergan E, et al. 2019. Influence of postmortem aging and post-aging freezing on pork loin quality attributes. Meat Muscle Biol. 3(1):313–323. doi: 10.22175/mmb2019.05.0015.
  • Shuken SR. 2023. An introduction to mass spectrometry-based proteomics. J Proteome Res. 22(7):2151–2171. doi: 10.1021/acs.jproteome.2c00838.
  • Smith JAB, Murach KA, Dyar KA, Zierath JR. 2023. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol. doi: 10.1038/s41580-023-00606-x.
  • Smith LM, Agar JN, Chamot-Rooke J, Danis PO, Ge Y, Loo JA, Pasa-Tolic L, Tsybin YO, Kelleher NL, Consortium for Top-Down Proteomics. 2021. The Human Proteoform Project: defining the human proteome. Sci Adv. 7(46):eabk0734. doi: 10.1126/sciadv.abk0734.
  • Smith LM, Kelleher NL, Consortium for Top-Down Proteomics. 2013. Proteoform: a single term describing protein complexity. Nat Methods. 10(3):186–187. doi: 10.1038/nmeth.2369.
  • Smith LM, Thomas PM, Shortreed MR, Schaffer LV, Fellers RT, LeDuc RD, Tucholski T, Ge Y, Agar JN, Anderson LC, et al. 2019. A five-level classification system for proteoform identifications. Nat Methods. 16(10):939–940. doi: 10.1038/s41592-019-0573-x.
  • Stewart JM, Blakely JA, Karpowicz PA, Kalanxhi E, Thatcher BJ, Martin BM. 2004. Unusually weak oxygen binding, physical properties, partial sequence, autoxidation rate and a potential phosphorylation site of beluga whale (Delphinapterus leucas) myoglobin. Comp Biochem Physiol B Biochem Mol Biol. 137(3):401–412. doi: 10.1016/j.cbpc.2004.01.007.
  • Suman SP, Faustman C, Stamer SL, Liebler DC. 2006. Redox instability induced by 4-hydroxy-2-nonenal in porcine and bovine myoglobins at pH 5.6 and 4 degrees C. J Agric Food Chem. 54(9):3402–3408. doi: 10.1021/jf052811y.
  • Suman SP, Joseph P. 2013. Myoglobin chemistry and meat color. Annu Rev Food Sci Technol. 4:79–99. doi: 10.1146/annurev-food-030212-182623.
  • Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE. 1995. Is Z-disk degradation responsible for postmortem tenderization? J Anim Sci. 73(5):1351–1367. doi: 10.2527/1995.7351351x.
  • Tengan CH, Rodrigues GS, Godinho RO. 2012. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci. 13(12):17160–17184. doi: 10.3390/ijms131217160.
  • Toby TK, Fornelli L, Kelleher NL. 2016. Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem (Palo Alto Calif). 9(1):499–519. doi: 10.1146/annurev-anchem-071015-041550.
  • Veiseth E, Shackelford SD, Wheeler TL, Koohmaraie M. 2001. Effect of postmortem storage on mu-calpain and m-calpain in ovine skeletal muscle. J Anim Sci. 79(6):1502–1508. doi: 10.2527/2001.7961502x.
  • Vierck KR, Legako J, Kim J, Johnson BJ, Brooks JC. 2020. Determination of package and muscle-type influence on proteolysis, beef-flavor-contributing free amino acids, final beef flavor, and tenderness. Meat Muscle Biol. 4(1):1–14. doi: 10.22175/mmb.10933.
  • Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. 2021. Myoglobin post-translational modifications influence color stability of beef longissimus lumborum. Meat and Muscle Biology. 5(1):1–21. doi: 10.22175/mmb.11689.
  • Warner R, Miller R, Ha M, Wheeler TL, Dunshea F, Li X, Vaskoska R, Purslow P. 2021. Meat tenderness: underlying mechanisms, instrumental measurement, and sensory assessment. Meat Muscle Biol. 4(2):1–25. doi: 10.22175/mmb.10489.
  • Warner RD, Dunshea FR, Ponnampalam EN, Cottrell JJ. 2005. Effects of nitric oxide and oxidation in vivo and postmortem on meat tenderness. Meat Sci. 71(1):205–217. doi: 10.1016/j.meatsci.2005.04.008.
  • Warner RD, Greenwood PL, Pethick DW, Ferguson DM. 2010. Genetic and environmental effects on meat quality. Meat Sci. 86(1):171–183. doi: 10.1016/j.meatsci.2010.04.042.
  • Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, et al. 2022. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci. 185:108657. ARTN108657 doi: 10.1016/j.meatsci.2021.108657.
  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 16(7):1090–1094. doi: 10.1002/elps.11501601185.
  • Wheeler TL, Crouse JD, Koohmaraie M. 1992. The effect of postmortem time of injection and freezing on the effectiveness of calcium chloride for improving beef tenderness. J Anim Sci. 70(11):3451–3457. doi: 10.2527/1992.70113451x.
  • Zhai C, Lonergan SM, Huff-Lonergan EJ, Johnson LG, Brown K, Prenni JE, M NN. 2023. Lipid peroxidation products influence calpain-1 functionality in vitro by covalent binding. J Agric Food Chem. 71(20):7836–7846. doi: 10.1021/acs.jafc.3c01225.
  • Zhai C, Peckham K, Belk KE, Ramanathan R, Nair MN. 2019. Carbon chain length of lipid oxidation products influence lactate dehydrogenase and NADH-dependent metmyoglobin reductase activity. J Agric Food Chem. 67(48):13327–13332. doi: 10.1021/acs.jafc.9b05634.
  • Zhu Y, Gagaoua M, Mullen AM, Viala D, Rai DK, Kelly AL, Sheehan D, Hamill RM. 2021. Shotgun proteomics for the preliminary identification of biomarkers of beef sensory tenderness, juiciness and chewiness from plasma and muscle of young Limousin-sired bulls. Meat Sci. 176:108488. doi: 10.1016/j.meatsci.2021.108488.
  • Zhu Y, Hamill RM, Mullen AM, Kelly AL, Gagaoua M. 2023. Molecular mechanisms contributing to the development of beef sensory texture and flavour traits and related biomarkers: insights from early post-mortem muscle using label-free proteomics. J Proteomics. 286:104953. doi: 10.1016/j.jprot.2023.104953.
  • Zou B, Jia F, Ji L, Li X, Dai R. 2023. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr. :1–24. doi: 10.1080/10408398.2023.2235435.