630
Views
0
CrossRef citations to date
0
Altmetric
Papers

Evaluation of hydration with lactoferrin on late-instar Tenebrio molitor larvae performance and functional properties of obtained meal

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 982-994 | Received 06 Apr 2023, Accepted 08 Sep 2023, Published online: 20 Sep 2023

References

  • Andreadis SS, Panteli N, Mastoraki M, Rizou E, Stefanou V, Tzentilasvili S, Sarrou E, Chatzifotis S, Krigas N, Antonopoulou E. 2021. Towards functional insect feeds: agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in Tenebrio molitor (coleoptera: tenebrionidae) breeding. Antioxidants. 11(1):68. doi: 10.3390/ANTIOX11010068/S1.
  • Antonopoulou E, Panteli N, Feidantsis K, Mastoraki M, Koutsogeorgiou EI, Grivaki E, Papagrigoriou T, Christias SP, Chatzifotis S, Lazari D, et al. 2022. Carob (Ceratonia siliqua) as functional feed is beneficial in Yellow Mealworm (Tenebrio molitor) Rearing: evidence from growth, antioxidant status and cellular responses. Antioxidants. 11(9):1840. doi: 10.3390/ANTIOX11091840/S1.
  • AOAC International. 2019. Official Methods of Analysis, 21nd Edition. Washington, DC: AOAC.
  • Baek M, Kim MA, Kwon YS, Hwang JS, Goo TW, Jun M, Yun EY. 2019. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Entomol Res. 49(6):284–293. doi: 10.1111/1748-5967.12363.
  • Binggeli O, Neyen C, Poidevin M, Lemaitre B. 2014. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLOS Pathog. 10(5):e1004067. doi: 10.1371/JOURNAL.PPAT.1004067.
  • Bonjoch NP, Tamayo PR. 2001. Protein content quantification by Bradford method. In: Reigosa Roger MJ, editor. Handbook of Plant Ecophysiology Techniques. Dordrecht: Springer. p. 283–295. doi: 10.1007/0-306-48057-3_19.
  • Bordiean A, Krzyżaniak M, Stolarski MJ. 2022. Bioconversion potential of agro-industrial byproducts by Tenebrio molitor—long-term results. Insects. 13(9):810. doi: 10.3390/INSECTS13090810.
  • Deruytter D, Coudron CL, Claeys J. 2021. The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. J Insects Food Feed. 7(2):141–149. doi: 10.3920/JIFF2020.0049.
  • Dell’Anno M, Sotira S, Rebucci R, Reggi S, Castiglioni B, Rossi L. 2020. In vitro evaluation of antimicrobial and antioxidant activities of algal extracts. Ital J of Anim Sci. 19(1):103–113. doi: 10.1080/1828051X.2019.1703563.
  • Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Muller N, Whooley J, McGinnity P, et al. 2020. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep. 10(1):4194. doi: 10.1038/s41598-020-60325-7.
  • Food and Agriculture Organization of the United Nations (FAO). 2018. Transforming the livestock sector through the Sustainable Development Goals. Rome, Italy: FAO. doi: 10.4060/ca1201en.
  • Food and Agriculture Organization of the United Nations (FAO). 2021. The need for guidance on alternative proteins highlighted to codex Alimentarius Commission | Sustainable and circular bioeconomy for food systems transformation | Food and Agriculture Organization of the United Nations. https://www.fao.org/in-action/sustainable-and-circular-bioeconomy/resources/news/details/en/c/1459357/.
  • Fowles TM, Nansen C. 2020. Insect-based bioconversion: value from food waste. Food waste management: solving the Wicked Problem. 1st Edition. Cham: Palgrave Macmillan. p. 321–346. doi: 10.1007/978-3-030-20561-4_12/FIGURES/3.
  • Frazzini S, Scaglia E, Dell’Anno M, Reggi S, Panseri S, Giromini C, Lanzoni D, Sgoifo Rossi CA, Rossi L. 2022. Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: an In Vitro Study. Antioxidants. 11(5):992. doi: 10.3390/ANTIOX11050992/S1.
  • Garas LC, Feltrin C, Hamilton MK, Hagey JV, Murray JD, Bertolini LR, Bertolini M, Raybould HE, Maga EA. 2016. Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition. Food Funct. 7(2):665–678. doi: 10.1039/c5fo01217a.
  • Glantzounis G, Tsimoyiannis E, Kappas A, Galaris D. 2005. Uric acid and oxidative stress. Curr Pharm Des. 11(32):4145–4151. doi: 10.2174/138161205774913255.
  • Güneş E, Nizamlioğlu HF, Aydin H. 2018. Antioxidant activity of chitin obtained from the insect. J Int Environ Appl Sci. 13(4):213–216. https://dergipark.org.tr/en/pub/jieas/issue/42086/481991.
  • Hawkey KJ, Lopez-Viso C, Brameld JM, Parr T, Salter AM. 2021. Insects: a potential source of protein and other nutrients for feed and food. Annu Rev Anim Biosci. 9(1):333–354. doi: 10.1146/annurev-animal-021419-083930.
  • Hong J, Han T, Kim YY. 2020. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: a Review. Animals. 10(11):2068. doi: 10.3390/ANI10112068.
  • van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: future prospects for food and feed security. Rome. https://www.fao.org/3/i3253e/i3253e.pdf.
  • Ites S, Smetana S, Toepfl S, Heinz V. 2020. Modularity of insect production and processing as a path to efficient and sustainable food waste treatment. J Clean Prod. 248:119248. doi: 10.1016/j.jclepro.2019.119248.
  • Jahan M, Kracht S, Ho Y, Haque Z, Bhattachatyya BN, Wynn PC, Wang B. 2017. Dietary lactoferrin supplementation to gilts during gestation and lactation improves pig production and immunity. PLOS One. 12(10):e0185817. doi: 10.1371/JOURNAL.PONE.0185817.
  • Jamaa ZIM, Lhomme P, Takhim A, Sarehane M, Bouharroud R. 2021. Growth performance, conversion and survival rates of Tenebrio molitor (Coleoptera: tenebrionidae) reared on various livestock diets. Moroccan J Agri Sci. 2(4):161–164. https://www.researchgate.net/publication/357168518.
  • Janssen RH, Vincken JP, Van Den Broek LAM, Fogliano V, Lakemond CMM. 2017. Nitrogen-to-protein conversion factors for three edible insects: tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem. 65(11):2275–2278. doi: 10.1021/ACS.JAFC.7B00471.
  • Jantzen da Silva Lucas A, Menegon de Oliveira L, da Rocha M, Prentice C. 2020. Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chem. 311:126022. doi: 10.1016/J.FOODCHEM.2019.126022.
  • Keil C, Grebenteuch S, Kröncke N, Kulow F, Pfeif S, Kanzler C, Rohn S, Boeck G, Benning R, Haase H. 2022. Systematic studies on the antioxidant capacity and volatile compound profile of Yellow Mealworm Larvae (T. molitor L.) under different drying regimes. Insects. 13(2):166. doi: 10.3390/INSECTS13020166/S1.
  • Kröncke N, Benning R. 2022. Self-selection of feeding substrates by Tenebrio molitor larvae of different ages to determine optimal macronutrient intake and the influence on larval growth and protein content. Insects. 13(7):657. doi: 10.3390/insects13070657.
  • Kröncke N, Neumeister M, Benning R. 2023. Near-infrared reflectance spectroscopy for quantitative analysis of fat and fatty acid content in living Tenebrio molitor larvae to detect the influence of substrate on larval composition. Insects. 14(2):114. doi: 10.3390/insects14020114.
  • Lee KP, Simpson SJ, Wilson K. 2008. Dietary protein-quality influences melanization and immune function in an insect. Funct Ecol. 22(6):1052–1061. doi: 10.1111/j.1365-2435.2008.01459.x.
  • Li L, Zhao Z, Liu H. 2013. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 92(1):103–109. doi: 10.1016/j.actaastro.2012.03.012.
  • Lu Y, Li Y, Lin Y, Wang J, Ma M, Guo H. 2022. Effects of heat treatment and simulated digestion on the properties and osteogenic activity of bovine lactoferrin. LWT. 162:113475. doi: 10.1016/j.lwt.2022.113475.
  • Luna-Castro S, Ceballos-Olvera I, Benavides-González F, Blanco-Martínez Z, Sánchez-Martínez G, Vázquez-Sauceda M de la L, de la Garza M. 2022. Bovine lactoferrin in fish culture: current research and future directions. Aquac Res. 53(3):735–745. doi: 10.1111/are.15621.
  • Malone A, Clark RF, Hoskin DW, Power Coombs MR. 2022. Regulation of macrophage-associated inflammatory responses by species-specific lactoferricin peptides. Front Biosci. 27(2):43. doi: 10.31083/J.FBL2702043/2768-6698-27-2-043/FIG9.JPG.
  • Mancini S, Mattioli S, Paolucci S, Fratini F, Dal Bosco A, Tuccinardi T, Paci G. 2021. Effect of cooking techniques on the in vitro protein digestibility, fatty acid profile, and oxidative status of Mealworms (Tenebrio molitor). Front Vet Sci. 8:675572. doi: 10.3389/FVETS.2021.675572/BIBTEX.
  • Manzanares P, Salom JB, García-Tejedor A, Fernández-Musoles R, Ruiz-Giménez P, Gimeno-Alcañíz JV. 2015. Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond. Food Funct. 6(8):2440–2452. doi: 10.1039/C5FO00580A.
  • McCluney KE, Date RC. 2008. The effects of hydration on growth of the house cricket, Acheta domesticus. J Insect Sci. 8(32):1–9. doi: 10.1673/031.008.3201.
  • Meyer-Rochow VB, Gahukar RT, Ghosh S, Jung C. 2021. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods. 10(5):1036. doi: 10.3390/FOODS10051036.
  • Mokrzycki WS, Tatol M. 2011. Color difference ΔE : a survey. Mach Graph Vis. 20(4):383–411. https://www.infona.pl//resource/bwmeta1.element.baztech-acbebd17-40d3-40db-860d-58d8876202d7.
  • National Research Council. 2012. Nutrient Requirements of Swine: eleventh Revised Edition. Washington, DC: The National Academies Press. doi: 10.17226/13298.
  • Ngo DH, Kim SK. 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res. 73:15–31. doi: 10.1016/B978-0-12-800268-1.00002-0.
  • Niaz B, Saeed F, Ahmed A, Imran M, Maan AA, Khan MKI, Tufail T, Anjum FM, Hussain S, Suleria HAR. 2019. Lactoferrin (LF): a natural antimicrobial protein. Int J Food Prop. 22(1):1626–1641. doi: 10.1080/10942912.2019.1666137.
  • Oonincx DGAB, Van Broekhoven S, Van Huis A, Van Loon JJA. 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS One. 10(12):e0144601. doi: 10.1371/JOURNAL.PONE.0144601.
  • Parrini S, Aquilani C, Pugliese C, Bozzi R, Sirtori F. 2023. Soybean replacement by alternative protein sources in pig nutrition and its effect on meat quality. Animals. 13(3):494. doi: 10.3390/ani13030494.
  • Paula EM, Broderick GA, Danes MAC, Lobos NE, Zanton GI, Faciola AP. 2018. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. J Dairy Sci. 103(2):1463–1471. doi: 10.3168/JDS.2017-13392.
  • Pinotti L, Ottoboni M. 2021. Substrate as insect feed for bio-mass production. J Insects Food Feed. 7(5):585–596. doi: 10.3920/JIFF2020.0110/SUPPL_FILE/JIFF2020.0110_ESM.PDF.
  • Reggi S, Giromini C, Dell’Anno M, Baldi A, Rebucci R, Rossi L. 2020. In Vitro digestion of chestnut and Quebracho tannin extracts: antimicrobial effect, antioxidant capacity and cytomodulatory activity in swine intestinal IPEC-J2 Cells. Animals. 10(2):195. doi: 10.3390/ANI10020195.
  • Rossi L, Turin L, Alborali GL, Demartini E, Filipe JFS, Riva F, Riccaboni P, Scanziani E, Trevisi P, Dall’Ara P, et al. 2021. Translational approach to induce and evaluate verocytotoxic E. coli O138 based disease in piglets. Animals . 11(8):2415. doi: 10.3390/ANI11082415.
  • Sfeir RM, Dubarry M, Boyaka PN, Rautureau M, Tomé D. 2004. The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr. 134(2):403–409. doi: 10.1093/JN/134.2.403.
  • Shin CS, Kim DY, Shin WS. 2019. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial activities. Int J Biol Macromol. 125:72–77. doi: 10.1016/J.IJBIOMAC.2018.11.242.
  • van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJA. 2015. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: tenebrionidae) on diets composed of organic by-products. J Insect Physiol. 73:1–10. doi: 10.1016/J.JINSPHYS.2014.12.005.
  • Veldkamp T, Dong L, Paul A, Govers C. 2022. Bioactive properties of insect products for monogastric animals – a review. J InsFood Feed. 8(9):1027–1040. doi: 10.3920/JIFF2021.0031.
  • Weihrauch D, O'Donnell MJ. 2021. Mechanisms of nitrogen excretion in insects. Curr Opin Insect Sci. 47:25–30. doi: 10.1016/J.COIS.2021.02.007.
  • Wu Q, Patočka J, Kuča K. 2018. Insect antimicrobial peptides, a mini review. Toxins. 10(11):461. doi: 10.3390/TOXINS10110461.
  • Yu X, He Q, Wang D. 2021. Dynamic analysis of major components in the different developmental stages of Tenebrio molitor. Front Nutr. 8:689746. doi: 10.3389/fnut.2021.689746.
  • Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. 2016. Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol. 61(1):177–196. doi: 10.1146/ANNUREV-ENTO-010715-023933.