463
Views
0
CrossRef citations to date
0
Altmetric
Papers

Effects of partially defatted larvae meal of Black Soldier Fly (Hermetia illucens) on caecal microbiota and volatile compounds of Muscovy ducks (Cairina moschata domestica)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1151-1161 | Received 20 Jun 2023, Accepted 13 Oct 2023, Published online: 05 Nov 2023

References

  • Addeo NF, Randazzo B, Olivotto I, Messina M, Tulli F, Vozzo S, Attia YA, Mahayri TM, Iannaccone F, Asiry KA, et al. 2022. Low inclusion levels of Tenebrio molitor larvae meal in laying Japanese quail (Coturnix japonica, Gould, 1837) diet improve the intestinal morphometry, enzymatic activity and caecal short chain fatty acids profile. Res Vet Sci. 149:51–59. doi: 10.1016/j.rvsc.2022.06.007.
  • Aitchison J. 1982. The statistical analysis of compositional data. J Roy Stat Soc B Stat Meth. 44(2):139–160. doi: 10.1111/j.2517-6161.1982.tb01195.x.
  • Ali Q, Ma S, La S, Guo Z, Liu B, Gao Z, Farooq U, Wang Z, Zhu X, Cui Y, et al. 2022. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health—a review. Anim Biosci. 35(10):1461–1478. doi: 10.5713/ab.21.0562.
  • Atallah E, Mahayri TM, Fliegerová KO, Mrázek J, Addeo NF, Bovera F, Moniello G. 2023. The effect of different levels of Hermetia illucens oil inclusion on caecal microbiota of Japanese quails (Coturnix japonica, Gould, 1837). J Insects Food Feed. 1(aop):1–19. doi: 10.1163/23524588-20230052.
  • Audrain B, Farag MA, Ryu C-M, Ghigo J-M. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev. 39(2):222–233. doi: 10.1093/femsre/fuu013.
  • Battelli G, Scano P, Albano C, Cagliani LR, Brasca M, Consonni R. 2019. Modifications of the volatile and nonvolatile metabolome of goat cheese due to adjunct of non-starter lactic acid bacteria. LWT - Food Science and Technology. 116:108576. doi: 10.1016/j.lwt.2019.108576.
  • Biasato I, Ferrocino I, Dabbou S, Evangelista R, Gai F, Gasco L, Cocolin L, Capucchio MT, Schiavone A. 2020. Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. J Anim Sci Biotechnol. 11:11. doi: 10.1186/s40104-019-0413-y.
  • Biasato I, Gasco L, Schiavone A, Capucchio MT, Ferrocino I. 2023. Gut microbiome changes in insect-fed monogastric species: state-of-the-art and future perspectives. Anim Front. 13(4):72–80. doi: 10.1093/af/vfad025.
  • Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, Nizza A, Lembo F, Fioretti A. 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep. 7(1):16269. doi: 10.1038/s41598-017-16560-6.
  • Celi P, Verlhac V, Calvo EP, Schmeisser J, Kluenter A-M. 2019. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol. 250:9–31. doi: 10.1016/j.anifeedsci.2018.07.012.
  • Chang W-Y, Yu Y-H. 2022. Effect of Bacillus species–fermented products and essential oils on growth performance, gut morphology, cecal short-chain fatty acid levels, and microbiota community in broilers. Poult Sci. 101(8):101970. doi: 10.1016/j.psj.2022.101970.
  • Diaz Carrasco JM, Casanova NA, Fernández Miyakawa ME. 2019. Microbiota, gut health and chicken productivity: what is the connection? Microorganisms. 7(10):374. doi: 10.3390/microorganisms7100374.
  • Dörper A, Veldkamp T, Dicke M. 2021. Use of black soldier fly and house fly in feed to promote sustainable poultry production. J Insects Food Feed. 7(5):761–780. doi: 10.3920/JIFF2020.0064.
  • Gariglio M, Dabbou S, Biasato I, Capucchio MT, Colombino E, Hernández F, Madrid J, Martínez S, Gai F, Caimi C. 2019. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J Anim Sci Biotechnol. 10:37.
  • Gariglio M, Dabbou S, Gai F, Trocino A, Xiccato G, Holodova M, Gresakova L, Nery J, Bellezza Oddon S, Biasato I, et al. 2021. Black soldier fly larva in Muscovy duck diets: effects on duck growth, carcass property, and meat quality. Poult Sci. 100(9):101303. doi: 10.1016/j.psj.2021.101303.
  • Hartinger K, Fröschl K, Ebbing MA, Bruschek-Pfleger B, Schedle K, Schwarz C, Gierus M. 2022. Suitability of Hermetia illucens larvae meal and fat in broiler diets: effects on animal performance, apparent ileal digestibility, gut histology, and microbial metabolites. J Anim Sci Biotechnol. 13:50.
  • He C, Lei J, Yao Y, Qu X, Chen J, Xie K, Wang X, Yi Q, Xiao B, Guo S, et al. 2021. Black soldier fly (Hermetia illucens) larvae meal modulates intestinal morphology and microbiota in Xuefeng black-bone chickens. Front Microbiol. 12:706424. doi: 10.3389/fmicb.2021.706424.
  • Henchion M, Moloney A, Hyland J, Zimmermann J, McCarthy S. 2021. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal. 15 Suppl 1:100287. doi: 10.1016/j.animal.2021.100287.
  • Huang Y, Lv H, Song Y, Sun C, Zhang Z, Chen S. 2021. Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poult Sci. 100(4):100996. doi: 10.1016/j.psj.2021.01.019.
  • Iji PA, Toghyani M, Ahiwe EU, Omede AA, Applegate T. 2017. Alternative sources of protein for poultry nutrition. In: applegate T, editor. Achieving sustainable production of poultry meat Volume 2: breeding and nutrition. 1st ed. London: Burleigh Dodds Science; p. 237–269.
  • Ji M, Du H, Xu Y. 2020. Structural and metabolic performance of p-cresol producing microbiota in different carbon sources. Food Res Int. 132:109049. doi: 10.1016/j.foodres.2020.109049.
  • Kawasaki K, Hashimoto Y, Hori A, Kawasaki T, Hirayasu H, Iwase S-i, Hashizume A, Ido A, Miura C, Miura T, et al. 2019. Evaluation of black soldier fly (Hermetia illucens) larvae and pre-pupae raised on household organic waste, as potential ingredients for poultry feed. Animals. 9(3):98. doi: 10.3390/ani9030098.
  • Kogut MH. 2022. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci. 101(3):101673. doi: 10.1016/j.psj.2021.101673.
  • Liu S, Loo YT, Li Z, Ng K. 2023. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chem. 418:135802. doi: 10.1016/j.foodchem.2023.135802.
  • Mahesh M, Thakur SS, Kumar R, Malik TA, Gami R. 2017. Nitrogen fractionation of certain conventional-and lesser-known by-products for ruminants. Anim Nutr. 3(2):186–190. doi: 10.1016/j.aninu.2017.04.003.
  • Martínez Marín AL, Gariglio M, Biasato I, Gasco L, Schiavone A. 2023. Meta-analysis of the effect of black soldier fly larvae meal in diet on broiler performance and prediction of its metabolisable energy value. Italian J Anim Sci. 22(1):379–387. doi: 10.1080/1828051X.2023.2194909.
  • Moniello G, Ariano A, Panettieri V, Tulli F, Olivotto I, Messina M, Randazzo B, Severino L, Piccolo G, Musco N, et al. 2019. Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets. Animals. 9(3):86. doi: 10.3390/ani9030086.
  • Mottet A, Tempio G. 2017. Global poultry production: current state and future outlook and challenges. World’s Poult Sci J. 73(2):245–256. doi: 10.1017/S0043933917000071.
  • Moula N, Hornick J-L, Cabaraux J-F, Korsak N, Daube G, Dawans E, Antoine N, Taminiau B, Detilleux J. 2018. Effects of dietary black soldier fly larvae on performance of broilers mediated or not through changes in microbiota. J Insects Food Feed. 4(1):31–42. doi: 10.3920/JIFF2017.0011.
  • Mukdsi MCA, Maillard M-B, Medina RB, Thierry A. 2018. Ethyl butanoate is synthesised both by alcoholysis and esterification by dairy lactobacilli and propionibacteria. LWT. 89:38–43. doi: 10.1016/j.lwt.2017.10.012.
  • Paliy O, Shankar V. 2016. Application of multivariate statistical techniques in microbial ecology. Mol Ecol. 25(5):1032–1057. doi: 10.1111/mec.13536.
  • Rinttilä T, Apajalahti J. 2013. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. J Appl Poultry Res. 22(3):647–658. doi: 10.3382/japr.2013-00742.
  • Sanford RF, Pierson CT, Crovelli RA. 1993. An objective replacement method for censored geochemical data. Math Geol. 25(1):59–80. doi: 10.1007/BF00890676.
  • Siegerstetter S-C, Schmitz-Esser S, Magowan E, Wetzels SU, Zebeli Q, Lawlor PG, O'Connell NE, Metzler-Zebeli BU. 2017. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One. 12(11):e0187766. doi: 10.1371/journal.pone.0187766.
  • Singh K, Shah T, Deshpande S, Jakhesara S, Koringa P, Rank D, Joshi C. 2012. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol Biol Rep. 39(12):10595–10602. doi: 10.1007/s11033-012-1947-7.
  • Smets R, Claes J, Van Der Borght M. 2021. On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal Bioanal Chem. 413(25):6365–6377. doi: 10.1007/s00216-021-03595-y.
  • Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen H, Haring VR, Moore RJ. 2012. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol. 96(5):1361–1369. doi: 10.1007/s00253-011-3847-5.
  • Tallentire C, Mackenzie S, Kyriazakis I. 2017. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agr Syst. 154:145–156. doi: 10.1016/j.agsy.2017.03.018.
  • Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, MacAlpine R, Percy NJ, Ophel-Keller K. 2011. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl Environ Microbiol. 77(17):5868–5878. doi: 10.1128/AEM.00165-11.
  • Vasaï F, Brugirard Ricaud K, Bernadet MD, Cauquil L, Bouchez O, Combes S, Davail S. 2014. Overfeeding and genetics affect the composition of intestinal microbiota in Anas platyrhynchos (Pekin) and Cairina moschata (Muscovy) ducks. FEMS Microbiol Ecol. 87(1):204–216. doi: 10.1111/1574-6941.12217.
  • Wang S, Chen L, He M, Shen J, Li G, Tao Z, Wu R, Lu L. 2018. Different rearing conditions alter gut microbiota composition and host physiology in Shaoxing ducks. Sci Rep. 8(1):7387. doi: 10.1038/s41598-018-25760-7.
  • Wei S, Morrison M, Yu Z. 2013. Bacterial census of poultry intestinal microbiome. Poult Sci. 92(3):671–683. doi: 10.3382/ps.2012-02822.
  • Yadav S, Jha R. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J Anim Sci Biotechnol. 10:2. doi: 10.1186/s40104-018-0310-9.
  • Yang H, Lyu W, Lu L, Shi X, Li N, Wang W, Xiao Y. 2020. Biogeography of microbiome and short-chain fatty acids in the gastrointestinal tract of duck. Poult Sci. 99(8):4016–4027. doi: 10.1016/j.psj.2020.03.040.
  • Yang T, Jiang Y, Tang J, Chang G, Zhao W, Hou S, Chen G. 2022. Comparison of cecal microbiota and performance indices between lean-type and fatty-type pekin ducks. Front Microbiol. 13:820569. doi: 10.3389/fmicb.2022.820569.
  • Zhu C, Xu W, Tao Z, Song W, Liu H, Zhang S, Li H. 2020. Effects of rearing conditions and sex on cecal microbiota in ducks. Front Microbiol. 11:565367. doi: 10.3389/fmicb.2020.565367.