464
Views
0
CrossRef citations to date
0
Altmetric
Aquaculture, Companion and Wild Game Animals

Potential use of cowpea protein hydrolysate as a dietary supplement in broiler chickens: effects on growth, intestinal morphology, muscle lipid profile, and immune status

, ORCID Icon, , , , , , , , & show all
Pages 1204-1218 | Received 29 Aug 2023, Accepted 18 Oct 2023, Published online: 11 Nov 2023

References

  • Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, et al. 2022. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird’s health and production. Poult Sci. 101(4):101696. doi: 10.1016/j.psj.2022.101696.
  • Abdel-Hamid M, Goda HA, De Gobba C, Jenssen H, Osman A. 2016. Antibacterial activity of papain hydrolysed camel whey and its fractions. Int Dairy J. 61:91–98. doi: 10.1016/j.idairyj.2016.04.004.
  • Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E. 2017. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J. 66:91–98. doi: 10.1016/j.idairyj.2016.11.006.
  • Abdel-Shafi S, Al-Mohammadi A-R, Almanaa TN, Moustafa AH, Saad TM, Ghonemey A-R, AnACarso I, Enan G, El-Gazzar N. 2020. Identification and testing of antidermatophytic oxaborole-6-benzene sulphonamide derivative (OXBS) from streptomyces atrovirens KM192347 isolated from soil. Antibiotics. 9(4):176. doi: 10.3390/antibiotics9040176.
  • Abdel-Shafi S, Al-Mohammadi A-R, Osman A, Enan G, Abdel-Hameid S, Sitohy M. 2019. Characterization and antibacterial activity of 7S and 11S globulins isolated from cowpea seed protein. Molecules. 24(6):1082. doi: 10.3390/molecules24061082.
  • Abdel-Shafi S, Osman A, Enan G, El-Nemer M, Sitohy M. 2016. Antibacterial activity of methylated egg white proteins against pathogenic G + and G − bacteria matching antibiotics. SpringerPlus. 5(1):983. doi: 10.1186/s40064-016-2625-3.
  • Abdel Rahman AN, Amer SA, Behairy A, Younis EM, Abdelwarith AA, Osman A, Moustafa AA, Davies SJ, Ibrahim RE. 2023. Using Azadirachta indica protein hydrolysate as a plant protein in Nile tilapia (Oreochromis niloticus) diet: effects on the growth, economic efficiency, antioxidant‐immune response and resistance to Streptococcus agalactiae. J Anim Physiol Anim Nutr. In press. doi: 10.1111/jpn.13857.
  • Abdel Rahman AN, Amer SA, Masoud SR, El-Saber MM, Osman A, Younis EM, Abdelwarith AA, Davies SJ, Khamis T, Ibrahim RE. 2023. Neem seed protein hydrolysate as a fishmeal substitute in Nile tilapia: effects on antioxidant/immune pathway, growth, amino acid transporters-related gene expression, and Aeromonas veronii resistance. Aquaculture. 573:739593. doi: 10.1016/j.aquaculture.2023.739593.
  • Abdollahi M, Zaefarian F, Gu Y, Xiao W, Jia J, Ravindran V. 2017. Influence of soybean bioactive peptides on growth performance, nutrient utilisation, digestive tract development and intestinal histology in broilers. JAAN. 5:e7. doi: 10.1017/JAN.2017.6.
  • Abebe BK, Alemayehu MT. 2022. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. JAgric Food Res. 10:100383. doi: 10.1016/j.jafr.2022.100383.
  • Adebiyi O, Ologhobo A, Adu O, Olasehinde T. 2010. Evaluation of the nutritional potentials of physically treated cowpea seed hulls in poultry feed. Emir J Food Agric. 22(3):232–239. doi: 10.9755/ejfa.v22i3.4893.
  • Amer SA, A-Nasser A, Al-Khalaifah HS, AlSadek DMM, Abdel Fattah DM, Roushdy EM, Sherief WRIA, Farag MFM, Altohamy DE, Abdel-Wareth AAA, et al. 2020. Effect of dietary medium-chain α-monoglycerides on the growth performance, intestinal histomorphology, amino acid digestibility, and broiler chickens’ blood biochemical parameters. Animals. 11(1):57. doi: 10.3390/ani11010057.
  • Amer SA, Al-Khalaifah HS, Gouda A, Osman A, Goda NI, Mohammed HA, Darwish MI, Hassan AM, Mohamed SKA. 2022. Potential effects of anthocyanin-rich roselle (Hibiscus sabdariffa L.) extract on the growth, intestinal histomorphology, blood biochemical parameters, and the immune status of broiler chickens. Antioxidants. 11(3):544. doi: 10.3390/antiox11030544.
  • Amer SA, Mohamed WA, Gharib HS, Al-Gabri NA, Gouda A, Elabbasy MT, El-Rahman A, Ghada I, Omar AE. 2021. Changes in the growth, ileal digestibility, intestinal histology, behavior, fatty acid composition of the breast muscles, and blood biochemical parameters of broiler chickens by dietary inclusion of safflower oil and vitamin C. BMC Vet Res. 17(1):68. doi: 10.1186/s12917-021-02773-5.
  • Amer SA, Rahman ANA, ElHady M, Osman A, Younis EM, Abdel-Warith A-WA, Moustafa AA, Khamis T, Davies SJ, Ibrahim RE. 2024. Use of moringa protein hydrolysate as a fishmeal replacer in diet of Oreochromis niloticus: effects on growth, digestive enzymes, protein transporters and immune status. Aquaculture. 579:740202. doi: 10.1016/j.aquaculture.2023.740202.
  • Anadón A. 2006. WS14 The EU ban of antibiotics as feed additives (2006): alternatives and consumer safety. J Vet Pharm Ther. 29(s1):41–44. doi: 10.1111/j.1365-2885.2006.00775_2.x.
  • AOAC. 2000. Official methods of analysis of AOAC International.
  • Apata DF, Ologhobo AD. 1997. Trypsin inhibitor and other anti-nutritional factors in tropical legume seeds. Tropical Science (United Kingdom
  • Aviagen R. 2009. Ross broiler management manual. Scotland, UK: www aviagen pp.1–114.
  • Bancroft JD, Gamble M. 2008. Theory and practice of histological techniques: Elsevier health sciences. Amsterdam, The Netherlands.
  • Belitz H-D, Grosch W, Schieberle P. 2009. Meat. Food chemistry. Berlin, Heidelberg: Springer-Verlag; p. 563–616. doi: 10.1007/978-3-540-69934-7_13.
  • Bevins CL, Salzman NH. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 9(5):356–368. doi: 10.1038/nrmicro2546.
  • Biasato I, Ferrocino I, Biasibetti E, Grego E, Dabbou S, Sereno A, Gai F, Gasco L, Schiavone A, Cocolin L, et al. 2018. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res. 14(1):383. doi: 10.1186/s12917-018-1690-y.
  • Brody S. 1945. Bioenergetics and growth; with special reference to the efficiency complex in domestic animals.
  • Ciurescu G, Idriceanu L, Gheorghe A, Ropotă M, Drăghici R. 2022. Meat quality in broiler chickens fed on cowpea (Vigna unguiculata [L.] Walp) seeds. Sci Rep. 12(1):9685. doi: 10.1038/s41598-022-13611-5.
  • Ciurescu G, Vasilachi A, Ropota M, Palade M, Dragomir C. 2017. Beneficial effects of increasing dietary levels of raw lentil seeds on meat fatty acid and plasma metabolic profile in broiler chickens. Indian J Anim Sci. 87:1385–1390.
  • Darras VM, Van der Geyten S, Kühn ER. 2000. Thyroid hormone metabolism in poultry. Biotechnol. Agron. Soc. Environ. 4(1):13–20.
  • Doumas BT, Bayse DD, Carter RJ, Peters T, Jr, Schaffer R. 1981. A candidate reference method for determination of total protein in serum. I. Development and validation. Clin Chem. 27(10):1642–1650. doi: 10.1093/clinchem/27.10.1642.
  • El-Gazzar NS, Enan G. 2020. Advances in phage inspired nanoscience based therapy. In: nanoBioMedicine. Springer. p. 237–257.
  • Enan G. 2006. Behaviour of Listeria monocytogenes LMG 10470 in poultry meat and its control by the bacteriocin Plantaricin UG 1. International J of Poultry Science. 5(4):355–359. doi: 10.3923/ijps.2006.355.359.
  • Fitzgerald RJ, Murray BA. 2006. Bioactive peptides and lactic fermentations. Int J of Dairy Tech. 59(2):118–125. doi: 10.1111/j.1471-0307.2006.00250.x.
  • Frikha M, Mohiti-Asli M, Chetrit C, Mateos G. 2014. Hydrolyzed porcine mucosa in broiler diets: effects on growth performance, nutrient retention, and histomorphology of the small intestine. Poult Sci. 93(2):400–411. doi: 10.3382/ps.2013-03376.
  • Gao J, Zhang H, Yu S, Wu S, Yoon I, Quigley J, Gao Y, Qi G. 2008. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult Sci. 87(7):1377–1384. doi: 10.3382/ps.2007-00418.
  • Ghribi AM, Gafsi IM, Sila A, Blecker C, Danthine S, Attia H, Bougatef A, Besbes S. 2015. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chem. 187:322–330. doi: 10.1016/j.foodchem.2015.04.109.
  • Gómez A, Gay C, Tironi V, Avanza MV. 2021. Structural and antioxidant properties of cowpea protein hydrolysates. Food Biosci. 41:101074. doi: 10.1016/j.fbio.2021.101074.
  • Grant GH. 1987. Amino acids and proteins. Fundamentals of clinical chemistry.
  • Hartmann R, Meisel H. 2007. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 18(2):163–169. doi: 10.1016/j.copbio.2007.01.013.
  • Herrero C, Hu X, Li WP, Samuels S, Sharif MN, Kotenko S, Ivashkiv LB. 2003. Reprogramming of IL-10 activity and signaling by IFN-γ. J Immunol. 171(10):5034–5041. doi: 10.4049/jimmunol.171.10.5034.
  • Horiguchi N, Horiguchi H, Suzuki Y. 2005. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Biosci Biotechnol Biochem. 69(12):2445–2449. doi: 10.1271/bbb.69.2445.
  • Hou Y, Yao K, Yin Y, Wu G. 2016. Endogenous synthesis of amino acids limits growth, lactation, and reproduction in animals. Adv Nutr. 7(2):331–342. doi: 10.3945/an.115.010850.
  • Hou Y, Yin Y, Wu G. 2015. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med (Maywood). 240(8):997–1007. doi: 10.1177/1535370215587913.
  • Ibrahim RE, Tolba SA, Younis EM, Abdel-Warith A-WA, Shalaby SI, Osman A, Khamis T, Eissa MA, Davies SJ, Amer SA. 2023. Kidney bean protein hydrolysate as a fish meal replacer: effects on growth, digestive enzymes, metabolic functions, immune-antioxidant parameters and their related gene expression, intestinal and muscular gene expression. Aquaculture. 575:739803. doi: 10.1016/j.aquaculture.2023.739803.
  • Islam MR, Lepp D, Godfrey DV, Orban S, Ross K, Delaquis P, Diarra MS. 2019. Effects of wild blueberry (Vaccinium angustifolium) pomace feeding on gut microbiota and blood metabolites in free-range pastured broiler chickens. Poult Sci. 98(9):3739–3755. doi: 10.3382/ps/pez062.
  • Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R. 2018. Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric. 98(13):4793–4806. doi: 10.1002/jsfa.9074.
  • Johnson EA, Brekke CJ. 1983. Functional properties of acylated pea protein isolates. J Food Sci. 48(3):722–725. JoFS. doi: 10.1111/j.1365-2621.1983.tb14883.x.
  • Kawasaki T, Iwasaki T, Ohya I, Hasegawa Y, Noguchi M, Watanabe T. 2020. Effects of sampling and storage method on chicken blood glucose measurement. J Poult Sci. 57(3):241–245. doi: 10.2141/jpsa.0190106.
  • Korakas E, Dimitriadis G, Raptis A, Lambadiari V. 2018. Dietary composition and cardiovascular risk: a mediator or a bystander? Nutrients. 10(12):1912. doi: 10.3390/nu10121912.
  • Kotzamanis Y, Gisbert E, Gatesoupe F, Infante JZ, Cahu C. 2007. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A Mol Integr Physiol. 147(1):205–214. doi: 10.1016/j.cbpa.2006.12.037.
  • Landy N, Kheiri F, Faghani M. 2020. Evaluation of cottonseed bioactive peptides on growth performance, carcase traits, immunity, total antioxidant activity of serum and intestinal morphology in broiler chickens. Ital J Anim Sci. 19(1):1375–1386. doi: 10.1080/1828051X.2020.1844085.
  • Laudadio V, Ceci E, Tufarelli V. 2011. Productive traits and meat fatty acid profile of broiler chickens fed diets containing micronized fava beans (Vicia faba L. var. minor) as the main protein source. J Appl Poult Res. 20(1):12–20. doi: 10.3382/japr.2010-00173.
  • Lee SM, Lee TH, Cui E-J, Baek N-I, Hong SG, Chung I-S, Kim J. 2011. Anti-inflammatory effects of cowpea (Vigna sinensis K.) seed extracts and its bioactive compounds. J Korean Soc Appl Biol Chem. 54(5):710–717. doi: 10.1007/BF03253149.
  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. 2019. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 11:3919.
  • Lie Ø, Syed M, Solbu H. 1986. Improved agar plate assays of bovine lysozyme and haemolytic complement activity. Acta Vet Scand. 27(1):23–32. doi: 10.1186/BF03548556.
  • Lima CA, Campos JF, Filho JLL, Converti A, da Cunha MGC, Porto AL. 2015. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. J Food Sci Technol. 52(7):4459–4466. doi: 10.1007/s13197-014-1463-y.
  • Liyanage R, Perera O, Weththasinghe P, Jayawardana B, Vidanaarachchi J, Sivakanesan R. 2014. Nutritional properties and antioxidant content of commonly consumed cowpea cultivars in Sri Lanka. J Food Legumes. 27:215–217.
  • Łojewska E, Sakowicz T. 2021. An alternative to antibiotics: selected methods to combat zoonotic foodborne bacterial infections. Curr Microbiol. 78(12):4037–4049. doi: 10.1007/s00284-021-02665-9.
  • Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, IOAnnidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, et al. 2020. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 20(9):e216–e230. doi: 10.1016/S1473-3099(20)30327-3.
  • Mancuso G, Midiri A, Gerace E, Biondo C. 2021. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10(10):1310. doi: 10.3390/pathogens10101310.
  • Marques MR, Fontanari GG, Pimenta DC, Soares-Freitas RM, Arêas JAG. 2015. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Res Int. 77:43–48. doi: 10.1016/j.foodres.2015.04.020.
  • Marques MR, Freitas RAMS, Carlos ACC, Siguemoto ÉS, Fontanari GG, Arêas JAG. 2015. Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilisation into micelles. Food Chem. 168:288–293. doi: 10.1016/j.foodchem.2014.07.049.
  • McCalla J, Waugh T, Lohry E. 2010. Protein hydrolysates/peptides in animal nutrition. In: Pasupuleti V, Demain A, editors. Protein Hydrolysates in Biotechnology. Dordrecht (NL): Springer; p. 179–190. © Springer Science+Business Media B.V. doi: 10.1007/978-1-4020-6674-0_10.
  • Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. 2022. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: progress, opportunities, and challenges. Plants. 11(12):1583. doi: 10.3390/plants11121583.
  • Miles R, Butcher G, Henry P, Littell R. 2006. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult Sci. 85(3):476–485. doi: 10.1093/ps/85.3.476.
  • Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, et al. 2021. Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 11:668632. doi: 10.3389/fcimb.2021.668632.
  • Mudryj AN, Yu N, Hartman TJ, Mitchell DC, Lawrence FR, Aukema HM. 2012. Pulse consumption in Canadian adults influences nutrient intakes. Br J Nutr. 108 Suppl 1(S1):S27–S36. doi: 10.1017/S0007114512000724.
  • Nagodawithana TW, Nelles L, Trivedi NB. 2010. Protein hydrolysates as hypoallergenic, flavors and palatants for companion animals. In Pasupuleti V, Demain A, editors. Protein Hydrolysates in Biotechnology. Dordrecht (NL): Springer; p. 191–207. © Springer Science+Business Media B.V. doi: 10.1007/978-1-4020-6674-0_11.
  • Ohanenye IC, Ekezie F-GC, Sarteshnizi RA, Boachie RT, Emenike CU, Sun X, Nwachukwu ID, Udenigwe CC. 2022. Legume seed protein digestibility as influenced by traditional and emerging physical processing technologies. Foods. 11(15):2299. doi: 10.3390/foods11152299.
  • Ojwang LO, Banerjee N, Noratto GD, Angel-Morales G, Hachibamba T, Awika JM, Mertens-Talcott SU. 2015. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation–modulation of microRNA 126. Food Funct. 6(1):146–154. doi: 10.1039/c4fo00459k.
  • Opheim M, Sterten H, Øverland M, Kjos N. 2016. Atlantic salmon (Salmo salar) protein hydrolysate–Effect on growth performance and intestinal morphometry in broiler chickens. Livestock Science. 187:138–145. doi: 10.1016/j.livsci.2016.03.005.
  • Osho S, Xiao W, Adeola O. 2019. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poult Sci. 98(11):5669–5678. doi: 10.3382/ps/pez346.
  • Osman A, El-Araby GM, Taha H. 2016. Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system. J Appl Biol Biotechnol. 4:076–081.
  • Osman A, Enan G, Al-Mohammadi A-R, Abdel-Shafi S, Abdel-Hameid S, Sitohy MZ, El-Gazzar N. 2021. Antibacterial peptides produced by alcalase from Cowpea seed proteins. Antibiotics. 10(7):870. doi: 10.3390/antibiotics10070870.
  • Osman A, Goda HA, Abdel-Hamid M, Badran SM, Otte J-F, . 2016. Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Sci Technolo. 65:480–486. doi: 10.1016/j.lwt.2015.08.043.
  • Power O, Nongonierma AB, Jakeman P, FitzGerald RJ. 2014. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc. 73(1):34–46. doi: 10.1017/S0029665113003601.
  • Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. 2016. Complement component C3–The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev. 274(1):33–58. doi: 10.1111/imr.12500.
  • Saber S, Khalil RM, Abdo WS, Nassif D, El-Ahwany E. 2019. Olmesartan ameliorates chemically-induced ulcerative colitis in rats via modulating NFκB and Nrf-2/HO-1 signaling crosstalk. Toxicol Appl Pharmacol. 364:120–132. doi: 10.1016/j.taap.2018.12.020.
  • Salavati ME, Rezaeipour V, Abdullahpour R, Mousavi N. 2020. Effects of graded inclusion of bioactive peptides derived from sesame meal on the growth performance, internal organs, gut microbiota and intestinal morphology of broiler chickens. Int J Pept Res Ther. 26(3):1541–1548. doi: 10.1007/s10989-019-09947-8.
  • Segura Campos MR, Chel Guerrero LA, Betancur Ancona DA. 2010. Angiotensin‐I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J Sci Food Agric. 90(14):2512–2518. doi: 10.1002/jsfa.4114.
  • Shah M, Zaneb H, Masood S, Khan RU, Ashraf S, Sikandar A, Rehman HFU, Rehman HU. 2019. Effect of dietary supplementation of zinc and multi-microbe probiotic on growth traits and alteration of intestinal architecture in broiler. Probiotics Antimicrob Proteins. 11(3):931–937. doi: 10.1007/s12602-018-9424-9.
  • Sikandar A, Zaneb H, Younus M, Masood S, Aslam A, Khattak F, Ashraf S, Yousaf MS, Rehman H. 2017. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens. Asian-Australas J Anim Sci. 30(5):690–699. doi: 10.5713/ajas.16.0824.
  • Simpson RJ, Neuberger MR, Liu T-Y. 1976. Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem. 251(7):1936–1940. doi: 10.1016/S0021-9258(17)33637-2.
  • Sitohy M, Osman AJFC. 2010. Antimicrobial activity of native and esterified legume proteins against Gram-negative and Gram-positive bacteria. Food Chem. 120(1):66–73. doi: 10.1016/j.foodchem.2009.09.071.
  • Sreerama YN, Sashikala VB, Pratape VM. 2012. Phenolic compounds in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia and hypertension. Food Chem. 133(1):156–162. doi: 10.1016/j.foodchem.2012.01.011.
  • Tshovhote N, Nesamvuni A, Raphulu T, Gous R. 2003. The chemical composition, energy and amino acid digestibility of cowpeas used in poultry nutrition. SA J an Sci. 33(1):65–69. doi: 10.4314/sajas.v33i1.3739.
  • Wald M, Schwarz K, Rehbein H, Bußmann B, Beermann C. 2016. Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 205:221–228. doi: 10.1016/j.foodchem.2016.03.002.
  • Xia M, Hu C, Xu Z. 2004. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poult Sci. 83(11):1868–1875. doi: 10.1093/ps/83.11.1868.
  • Xia Y, Kong J, Zhang G, Zhang X, Seviour R, Kong Y. 2019. Effects of dietary supplementation with lysozyme on the structure and function of the cecal microbiota in broiler chickens. PLoS One. 14(6):e0216748. doi: 10.1371/journal.pone.0216748.
  • Yamauchi K-e. 2002. Review on chicken intestinal villus histological alterations related with intestinal function. J Poult Sci. 39(4):229–242. doi: 10.2141/jpsa.39.229.
  • Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, et al. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 31(3):457–468. doi: 10.1016/j.immuni.2009.07.002.
  • Zeitz J, Fennhoff J, Kluge H, Stangl G, Eder K. 2015. Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. Poult Sci. 94(10):2404–2413. doi: 10.3382/ps/pev191.