389
Views
0
CrossRef citations to date
0
Altmetric
Ruminants Nutrition and Feeding

Caprine milk fatty acid responses to dietary dried grape pomace

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1186-1194 | Received 28 Aug 2023, Accepted 23 Oct 2023, Published online: 09 Nov 2023

References

  • Alves SP, Cabrita ARJ, Fonseca AJM, Bessa RJB. 2008. Improved method for fatty acid analysis in herbage based on direct transesterification followed by solid-phase extraction. J Chromatogr A. 1209(1–2):212–219. doi: 10.1016/j.chroma.2008.08.114.
  • AOAC. 2000. Official Methods of Analysis. 16th ed. Gaithersburg, MD: AOAC International.
  • AOAC. 2003. Official Methods of Analysis. 17th ed. Gaithersburg, MD: AOAC International.
  • Bauman DE, Lock AL, Conboy Stephenson R, Linehan K, Ross RP, Stanton C. 2020. Conjugated Linoleic Acid: biosynthesis and Nutritional Significance. In: McSweeney PLH, Fox PF, O'Mahony JA, editors. Advanced Dairy Chemistry, Volume 2: lipids. Cham: Springer International Publishing; p. 67–106.
  • Bennato F, Ianni A, Florio M, Grotta L, Pomilio F, Saletti MA, Martino G. 2022. Nutritional properties of milk from dairy ewes fed with a diet containing grape pomace. Foods. 11(13):1878. doi: 10.3390/foods11131878.
  • Bernard L, Bonnet M, Delavaud C, Delosiere M, Ferlay A, Fougere H, Graulet B. 2018. Milk fat globule in ruminant: major and minor compounds, nutritional regulation and differences among species. Eur J Lipid Sci Tech. 120:1700039.
  • Bordiga M, Travaglia F, Locatelli M. 2019. Valorisation of grape pomace: an approach that is increasingly reaching its maturity - a review. Int J of Food Sci Tech. 54(4):933–942. doi: 10.1111/ijfs.14118.
  • Buffa G, Tsiplakou E, Mitsiopoulou C, Pulina G, Nudda A. 2020. Supplementation of by‐products from grape, tomato and myrtle affects antioxidant status of dairy ewes and milk fatty acid profile. J Anim Physiol Anim Nutr. 104(2):493–506. doi: 10.1111/jpn.13315.
  • Bustamante MA, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia MD. 2008. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 28(2):372–380. doi: 10.1016/j.wasman.2007.01.013.
  • Calder PC. 2018. Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc Nutr Soc. 77(1):52–72. doi: 10.1017/S0029665117003950.
  • Carreño D, Hervás G, Toral PG, Belenguer A, Frutos P. 2015. Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim Feed Sci Technol. 202:42–51. doi: 10.1016/j.anifeedsci.2015.02.003.
  • Chedea VS, Pelmus RS, Lazar C, Pistol GC, Calin LG, Toma SM, Dragomir C, Taranu I. 2017. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. J Sci Food Agric. 97(8):2516–2523. doi: 10.1002/jsfa.8068.
  • Correddu F, Caratzu MF, Lunesu MF, Carta S, Pulina G, Nudda A. 2023. Grape, pomegranate, olive, and tomato by-products fed to dairy ruminants improve milk fatty acid profile without depressing milk production. Foods. 12(4):865. doi: 10.3390/foods12040865.
  • de la Fuente MA, Luna P, Juárez M. 2006. Chromatographic techniques to determine conjugated linoleic acid isomers. Trends Anal Chem. 25(9):917–926. doi: 10.1016/j.trac.2006.04.012.
  • Dubeuf J-P, Ruiz Morales F, Guerrero YM. 2018. Evolution of goat production systems in the Mediterranean basin: between ecological intensification and ecologically intensive production systems. Small Rumin Res. 163:2–9. doi: 10.1016/j.smallrumres.2017.10.012.
  • EU. 1998. Council directive 98/58/EC of 20 July 1998 concerning the protection of animals kept for farming purposes. Off J Eur Comm. 221:23–27.
  • EU. 2010. Directive 2010/63/EU of the european parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Union. 276:33–79.
  • Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C. 2017. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie. 141:107–120. doi: 10.1016/j.biochi.2017.08.006.
  • Gómez-Cortés P, Cívico A, de la Fuente MA, Martínez Marín AL. 2019. Application of a linear regression model to study the origin of C17 branched-chain fatty acids in caprine milk fat. J Dairy Res. 86(4):461–463. doi: 10.1017/S0022029919000712.
  • Gómez-Cortés P, Juárez M, de la Fuente MA. 2018. Milk fatty acids and potential health benefits: an updated vision. Trends Food Sci Technol. 81:1–9. doi: 10.1016/j.tifs.2018.08.014.
  • Guerra-Rivas C, Gallardo B, Mantecón ÁR, del Álamo-Sanza M, Manso T. 2017. Evaluation of grape pomace from red wine by-product as feed for sheep. J Sci Food Agric. 97(6):1885–1893. doi: 10.1002/jsfa.7991.
  • Ianni A, Di Maio G, Pittia P, Grotta L, Perpetuini G, Tofalo R, Cichelli A, Martino G. 2019. Chemical–nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J Sci Food Agric. 99(7):3635–3643. doi: 10.1002/jsfa.9584.
  • Iussig G, Renna M, Gorlier A, Lonati M, Lussiana C, Battaglini LM, Lombardi G. 2015. Browsing ratio, species intake, and milk fatty acid composition of goats foraging on alpine open grassland and grazable forestland. Small Rumin Res. 132:12–24. doi: 10.1016/j.smallrumres.2015.09.013.
  • Kramer JK, Hernandez M, Cruz‐Hernandez C, Kraft J, Dugan ME. 2008. Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag‐ion SPE fractionation. Lipids. 43(3):259–273. doi: 10.1007/s11745-007-3143-4.
  • Luna P, Rodríguez-Pino V, de la Fuente MA. 2009. Occurrence of C16:1 isomers in milk fats from ewes fed with different dietary lipid supplements. Food Chem. 117(2):248–253. doi: 10.1016/j.foodchem.2009.03.107.
  • Manso T, Gallardo B, Salvá A, Guerra-Rivas C, Mantecón AR, Lavín P, de la Fuente MA. 2016. Influence of dietary grape pomace combined with linseed oil on fatty acid profile and milk composition. J Dairy Sci. 99(2):1111–1120. doi: 10.3168/jds.2015-9981.
  • Martínez Marín AL, Gómez-Cortés P, Núñez Sánchez N, Juárez M, Garzón Sigler AI, Blanco FP, de la Fuente MA. 2015. Associations between major fatty acids in plant oils fed to dairy goats and C18 isomers in milk fat. J Dairy Res. 82(2):152–160. doi: 10.1017/S002202991500014X.
  • Mertens DR. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int. 85(6):1217–1240.
  • Miller BA, Lu CD. 2019. Current status of global dairy goat production: an overview. Asian-Australas J Anim Sci. 32(8):1219–1232. doi: 10.5713/ajas.19.0253.
  • Moate PJ, Chalupa W, Boston RC, Lean IJ. 2008. Milk fatty acids II: prediction of the production of individual fatty acids in bovine milk. J Dairy Sci. 91(3):1175–1188. doi: 10.3168/jds.2007-0226.
  • Moate PJ, Jacobs JL, Hixson JL, Deighton MH, Hannah MC, Morris GL, Ribaux BE, Wales WJ, Williams SRO. 2020. Effects of feeding either red or white grape marc on milk production and methane emissions from early-lactation dairy cows. Animals. 10(6):976. doi: 10.3390/ani10060976.
  • Moate PJ, Williams SRO, Torok VA, Hannah MC, Ribaux BE, Tavendale MH, Eckard RJ, Jacobs JL, Auldist MJ, Wales WJ. 2014. Grape marc reduces methane emissions when fed to dairy cows. J Dairy Sci. 97(8):5073–5087. doi: 10.3168/jds.2013-7588.
  • Mohamed Ahmed IA, Özcan MM, Al Juhaimi F, Babiker EFE, Ghafoor K, Banjanin T, Osman MA, Gassem MA, Alqah HA. 2020. Chemical composition, bioactive compounds, mineral contents, and fatty acid composition of pomace powder of different grape varieties. J Food Process Preserv. 44(7):e14539. doi: 10.1111/jfpp.14539.
  • Molina-Alcaide E, Moumen A, Martín-García AI. 2008. By-products from viticulture and the wine industry: potential as sources of nutrients for ruminants. J Sci Food Agric. 88(4):597–604. doi: 10.1002/jsfa.3123.
  • Nudda A, Buffa G, Atzori AS, Cappai MG, Caboni P, Fais G, Pulina G. 2019. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim Feed Sci Technol. 251:76–85. doi: 10.1016/j.anifeedsci.2019.02.007.
  • Onache PA, Geana E-I, Ciucure CT, Florea A, Sumedrea DI, Ionete RE, Tița O. 2022. Bioactive phytochemical composition of grape pomace resulted from different white and red grape cultivars. Separations. 9(12):395. doi: 10.3390/separations9120395.
  • Paraskevopoulou C, Theodoridis A, Johnson M, Ragkos A, Arguile L, Smith L, Vlachos D, Arsenos G. 2020. Sustainability assessment of goat and sheep Farms: a comparison between european countries. Sustainability. 12(8):3099. doi: 10.3390/su12083099.
  • Pardo G, Martin-Garcia I, Arco A, Yañez-Ruiz DR, Moral R, del Prado A. 2016. Greenhouse-gas mitigation potential of agro-industrial by-products in the diet of dairy goats in Spain: a life-cycle perspective. Anim Prod Sci. 56(3):646–654. doi: 10.1071/AN15620.
  • Park YW. 2017. Goat Milk–Chemistry and Nutrition. In: Park YW, Haenlein GFW, Wendorff WL, editors. Handbook of milk of non‐bovine mammals. Hoboken, NJ: John Wiley & Sons Ltd; p. 42–83.
  • Pulina G, Milán MJ, Lavín MP, Theodoridis A, Morin E, Capote J, Thomas DL, Francesconi AHD, Caja G. 2018. Invited review: current production trends, farm structures, and economics of the dairy sheep and goat sectors. J Dairy Sci. 101(8):6715–6729. doi: 10.3168/jds.2017-14015.
  • Renna M, Cornale P, Lussiana C, Malfatto V, Fortina R, Mimosi A, Battaglini LM. 2012. Use of Pisum sativum (L.) as alternative protein resource in diets for dairy sheep: effects on milk yield, gross composition and fatty acid profile. Small Rumin Res. 102(2–3):142–150. doi: 10.1016/j.smallrumres.2011.07.007.
  • Renna M, Gasmi-Boubaker A, Lussiana C, Battaglini LM, Belfayez K, Fortina R. 2014. Fatty acid composition of the seed oils of selected Vicia L. taxa from Tunisia. Ital J Anim Sci. 13(2):3193. doi: 10.4081/ijas.2014.3193.
  • Requena F, Peña F, Agüera E, Martínez Marín AL. 2020. A meta-analytic approach to predict methane emissions from dairy goats using milk fatty acid profile. Sustainability. 12(12):4834. doi: 10.3390/su12124834.
  • Resconi VC, Pascual-Alonso M, Aguayo-Ulloa L, Miranda-de la Lama GC, Alierta S, Campo MM, Olleta JL, Villarroel M, María GA. 2018. Effect of dietary grape pomace and seed on ewe milk and meat quality of their suckling lambs. J Food Qual. 2018:1–8. doi: 10.1155/2018/2371754.
  • Ribeiro LF, Ribani RH, Francisco TMG, Soares AA, Pontarolo R, Haminiuk CWI. 2015. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. J Chromatogr B Analyt Technol Biomed Life Sci. 1007:72–80. doi: 10.1016/j.jchromb.2015.11.005.
  • Romero-Huelva M, Ramírez-Fenosa MA, Planelles-González R, García-Casado P, Molina-Alcaide E. 2017. Can by-products replace conventional ingredients in concentrate of dairy goat diet? J Dairy Sci. 100(6):4500–4512. doi: 10.3168/jds.2016-11766.
  • Song J, Wang Y, Fan X, Wu H, Han J, Yang M, Lu L, Nie G. 2019. Trans-vaccenic acid inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells via a mitochondrial-mediated apoptosis pathway. Lipids Health Dis. 18(1):46. doi: 10.1186/s12944-019-0993-8.
  • Tsiplakou E, Zervas G. 2008. The effect of dietary inclusion of olive tree leaves and grape marc on the content of conjugated linoleic acid and vaccenic acid in the milk of dairy sheep and goats. J Dairy Res. 75(3):270–278. doi: 10.1017/S0022029908003270.
  • Vacca GM, Stocco G, Dettori ML, Summer A, Cipolat-Gotet C, Bittante G, Pazzola M. 2018. Cheese yield, cheesemaking efficiency, and daily production of 6 breeds of goats. J Dairy Sci. 101(9):7817–7832. doi: 10.3168/jds.2018-14450.
  • Vahmani P, Meadus WJ, Duff P, Rolland DC, Dugan ME. 2017. Comparing the lipogenic and cholesterolgenic effects of individual trans‐18:1 isomers in liver cells. Eur J Lipid Sci Tech. 119:1600162.
  • Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. 2019. Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. J Dairy Sci. 102(5):3781–3804. doi: 10.3168/jds.2018-14985.
  • Virdis C, Sumby K, Bartowsky E, Jiranek V. 2020. Lactic acid bacteria in wine: technological advances and evaluation of their functional role. Front Microbiol. 11:612118–612118. doi: 10.3389/fmicb.2020.612118.
  • Wang X, Gupta J, Kerslake M, Rayat G, Proctor SD, Chan CB. 2016. Trans‐11 vaccenic acid improves insulin secretion in models of type 2 diabetes in vivo and in vitro. Mol Nutr Food Res. 60(4):846–857. doi: 10.1002/mnfr.201500783.
  • Yi C, Shi J, Kramer J, Xue S, Jiang Y, Zhang M, Ma Y, Pohorly J. 2009. Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chem. 114(2):570–576. doi: 10.1016/j.foodchem.2008.09.103.
  • Zervas G, Tsiplakou E. 2013. Goat Milk. In: Park YW, Haenlein GFW, editors. Milk and dairy products in human nutrition. Chichester, West Sussex, UK: John Wiley & Sons Ltd.; p. 498–518.