466
Views
0
CrossRef citations to date
0
Altmetric
Animal Genetics and Breeding

Polymorphism and promoter methylation-regulated mRNA expression of IFI6 gene affect meat quality in pigs

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1294-1304 | Received 26 Jun 2023, Accepted 26 Oct 2023, Published online: 14 Nov 2023

References

  • Abd El-Hack ME, Abdelnour SA, Swelum AA, Arif M. 2018. The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol Biol Rep. 45(5):1445–1456. doi: 10.1007/s11033-018-4211-y.
  • Abdalla BA, Chen J, Nie Q, Zhang X. 2018. Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model. Front Genet. 9:262. doi: 10.3389/fgene.2018.00262.
  • Allison C, Bates R, Booren A, Johnson R, Doumit M. 2003. Pork quality variation is not explained by glycolytic enzyme capacity. Meat Sci. 63(1):17–22. doi: 10.1016/s0309-1740(02)00046-3.
  • Baker ML, Serysheva II, Sencer S, Wu Y, Ludtke SJ, Jiang W, Hamilton SL, Chiu W. 2002. The skeletal muscle Ca2+ release channel has an oxidoreductase-like domain. Proc Natl Acad Sci U S A. 99(19):12155–12160. doi: 10.1073/pnas.182058899.
  • Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, Akan P, Stupka E, Down TA, Prokopenko I, et al. 2010. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLOS One. 5(11):e14040. doi: 10.1371/journal.pone.0014040.
  • Berchtold MW, Brinkmeier H, Muntener M. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 80(3):1215–1265. doi: 10.1152/physrev.2000.80.3.1215.
  • Bihan-Duval L, Debut M, Berri CM, Sellier N, Santé-Lhoutellier V, Jégo Y, Beaumont C. 2008. Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genet. 9(1):53. doi: 10.1186/1471-2156-9-53.
  • Boler DD, Dilger AC, Bidner BS, Carr SN, Eggert JM, Day JW, Ellis M, McKeith FK, Killefer J. 2010. Ultimate pH explains variation in pork quality traits. J Muscle Foods. 21(1):119–130. doi: 10.1111/j.1745-4573.2009.00171.x.
  • Borchers N, Otto G, Kalm E. 2007. Genetic relationship of drip loss to further meat quality traits in purebred Pietrains. Arch Anim Breed. 50(1):84–91. doi: 10.5194/aab-50-84-2007.
  • Bulotienė G, Jukna V. 2008. The influence of muscle fibre area on pork quality. Vet Med Zoot. 42:34–37.
  • Chen S, Li S, Chen L. 2016. Interferon‐inducible Protein 6‐16 (IFI‐6‐16, ISG16) promotes Hepatitis C virus replication in vitro. J Med Virol. 88(1):109–114. doi: 10.1002/jmv.24302.
  • Cheng Q, Sun D-W. 2008. Factors affecting the water holding capacity of red meat products: a review of recent research advances. Crit Rev Food Sci Nutr. 48(2):137–159. doi: 10.1080/10408390601177647.
  • Cinar MU, Kayan A, Uddin MJ, Jonas E, Tesfaye D, Phatsara C, Ponsuksili S, Wimmers K, Tholen E, Looft C, et al. 2012. Association and expression quantitative trait loci (eQTL) analysis of porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol Biol Rep. 39(4):4809–4821. doi: 10.1007/s11033-011-1274-4.
  • Corbett RJ, Luttman AM, Herrera-Uribe J, Liu H, Raney NE, Grabowski JM, Loving CL, Tuggle CK, Ernst CW. 2022. Assessment of DNA methylation in porcine immune cells reveals novel regulatory elements associated with cell-specific gene expression and immune capacity traits. BMC Genom. 23(1):575.
  • Davoli R, Braglia S. 2007. Molecular approaches in pig breeding to improve meat quality. Brief Funct Genomic Proteomic. 6(4):313–321. doi: 10.1093/bfgp/elm036.
  • Duthie C-A, Simm G, Doeschl-Wilson A, Kalm E, Knap PW, Roehe R. 2011. Quantitative trait loci for meat quality traits in pigs considering imprinting and epistatic effects. Meat Sci. 87(4):394–402. doi: 10.1016/j.meatsci.2010.11.017.
  • Fabbri M, Zappaterra M, Davoli R, Zambonelli P. 2020. Genome‐wide association study identifies markers associated with carcass and meat quality traits in Italian large white pigs. Anim Genet. 51(6):950–952. doi: 10.1111/age.13013.
  • Fiedler I, Ender K, Wicke M, Maak S, Lengerken G, Meyer W. 1999. Structural and functional characteristics of muscle fibres in pigs with different malignant hyperthermia susceptibility (MHS) and different meat quality. Meat Sci. 53(1):9–15. doi: 10.1016/s0309-1740(99)00030-3.
  • Fontanesi L, Colombo M, Beretti F, Russo V. 2008. Evaluation of post-mortem stability of porcine skeletal muscle RNA. Meat Sci. 80(4):1345–1351. doi: 10.1016/j.meatsci.2008.06.014.
  • Gandolfi G, Cinar MU, Ponsuksili S, Wimmers K, Tesfaye D, Looft C, Jüngst H, Tholen E, Phatsara C, Schellander K, et al. 2011. Association of PPARGC1A and CAPNS1 gene polymorphisms and expression with meat quality traits in pigs. Meat Sci. 89(4):478–485. doi: 10.1016/j.meatsci.2011.05.015.
  • Gao Y, Zhang R, Hu X, Li N. 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77(1):36–45. doi: 10.1016/j.meatsci.2007.03.026.
  • Hao Y, Cui Y, Gu X. 2016. Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing. Sci Rep. 6(1):27507. doi: 10.1038/srep27507.
  • Honikel K, Kim C, Hamm R, Roncales P. 1986. Sarcomere shortening of prerigor muscles and its influence on drip loss. Meat Sci. 16(4):267–282. doi: 10.1016/0309-1740(86)90038-0.
  • Jankowiak H, Cebulska A, Bocian M. 2021. The relationship between acidification (pH) and meat quality traits of polish white breed pigs. Eur Food Res Technol. 247(11):2813–2820. doi: 10.1007/s00217-021-03837-4.
  • Jaturasitha S, Khiaosa-Ard R, Pongpiachan P, Kreuzer M. 2009. Early deposition of n-3 fatty acids from tuna oil in lean and adipose tissue of fattening pigs is mainly permanent. J Anim Sci. 87(2):693–703.
  • Jia H, Mo W, Hong M, Jiang S, Zhang Y-Y, He D, Yu D, Shi Y, Cao J, Xu X, et al. 2020. Interferon -α inducible protein 6 (IFI6) confers protection against ionizing radiation in skin cells. J Dermatol Sci. 100(2):139–147. doi: 10.1016/j.jdermsci.2020.09.003.
  • Kayan A, Theerawatanasirikul S, Lekcharoensuk P, Boonkaewwan C, Kaewkot A, Chanaksorn M, Tantikositruj C, Gunawan A. 2022. Genetic association and expression of JHDM1A gene related to meat pH in commercial pigs. Trop Anim Sci J. 45(2):128–133. doi: 10.5398/tasj.2022.45.2.128.
  • Kayan A, Uddin MJ, Cinar MU, Grosse-Brinkhaus C, Phatsara C, Wimmers K, Ponsuksili S, Tesfaye D, Looft C, Juengst H, et al. 2011. Investigation on interferon alpha-inducible protein 6 (IFI6) gene as a candidate for meat and carcass quality in pig. Meat Sci. 88(4):755–760. doi: 10.1016/j.meatsci.2011.03.009.
  • Kayan A, Cinar MU, Uddin MJ, Phatsara C, Wimmers K, Ponsuksili S, Tesfaye D, Looft C, Juengst H, Tholen E, et al. 2011. Polymorphism and expression of the porcine Tenascin C gene associated with meat and carcass quality. Meat Sci. 89(1):76–83. doi: 10.1016/j.meatsci.2011.04.001.
  • Kayan A, Uddin MJ, Kocamis H, Tesfaye D, Looft C, Tholen E, Schellander K, Cinar MU. 2013. Association and expression analysis of porcine HNF1A gene related to meat and carcass quality traits. Meat Sci. 94(4):474–479. doi: 10.1016/j.meatsci.2013.04.015.
  • Khezri A, Narud B, Stenseth E-B, Johannisson A, Myromslien FD, Gaustad AH, Wilson RC, Lyle R, Morrell JM, Kommisrud E. 2019. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genom. 20:1–15.
  • Khoshoii AA, Mobini B, Rahimi E. 2013. Comparison of chicken strains: muscle fibre diameter and numbers in pectoralis superficialis muscle. Glob Vet. 11(1):55–58.
  • Koomkrong N, Gongruttananun N, Boonkaewwan C, Noosud J, Theerawatanasirikul S, Kayan A. 2017. Fiber characteristics of pork muscle exhibiting different levels of drip loss. Anim Sci J. 88(12):2044–2049. doi: 10.1111/asj.12859.
  • Küchenmeister U, Kuhn G. 2003. Regulation of intracellular Ca2+ concentration and meat quality in pigs. Arch Anim Breed. 46(5):445–454. doi: 10.5194/aab-46-445-2003.
  • Küchenmeister U, Kuhn G, Ender K. 2000. Seasonal effects on Ca2+ transport of sarcoplasmic reticulum and on meat quality of pigs with different malignant hyperthermia status. Meat Sci. 55(2):239–245. doi: 10.1016/s0309-1740(99)00149-7.
  • Laenoi W, Rangkasenee N, Uddin MJ, Cinar MU, Phatsara C, Tesfaye D, Scholz AM, Tholen E, Looft C, Mielenz M, et al. 2012. Association and expression study of MMP3, TGFβ1 and COL10A1 as candidate genes for leg weakness-related traits in pigs. Mol Biol Rep. 39(4):3893–3901. doi: 10.1007/s11033-011-1168-5.
  • Li L-C, Dahiya R. 2002. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 18(11):1427–1431. doi: 10.1093/bioinformatics/18.11.1427.
  • Li J, Xiang Y, Zhang L, Qi X, Zheng Z, Zhou P, Tang Z, Jin Y, Zhao Q, Fu Y, et al. 2022. Enhancer promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biol. 20(1):136. doi: 10.1186/s12915-022-01322-2.
  • Ling C. 2020. Epigenetic regulation of insulin action and secretion–role in the pathogenesis of type 2 diabetes. J Intern Med. 288(2):158–167. doi: 10.1111/joim.13049.
  • Listyarini K, Sumantri C, Rahayu S, Islam MA, Akter SH, Uddin MJ, Gunawan A. 2023. Hepatic transcriptome analysis reveals genes, polymorphisms, and molecules related to lamb tenderness. Anim. 13(4):674. doi: 10.3390/ani13040674.
  • Liu R, Li K, Yang T, Yang L, Qin M, Yu H, Wu M, Ge Q, Bao W, Wu S. 2023. Exploring the role of protein DJ-1 in quality of pale, soft and exudative (PSE) and red, firm and non-exudative (RFN) pork during post-mortem aging. Food Chem. 398:133817. doi: 10.1016/j.foodchem.2022.133817.
  • Liu X, Usman T, Wang Y, Wang Z, Xu X, Wu M, Zhang Y, Zhang X, Li Q, Liu L, et al. 2015. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas J Anim Sci. 28(4):467–475. doi: 10.5713/ajas.13.0837.
  • Moarii M, Boeva V, Vert J-P, Reyal F. 2015. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genom. 16(1):1–14.
  • Oliván M, González J, Bassols A, Díaz F, Carreras R, Mainau E, Arroyo L, Peña R, Potes Y, Coto-Montes A, et al. 2018. Effect of sex and RYR1 gene mutation on the muscle proteomic profile and main physiological biomarkers in pigs at slaughter. Meat Sci. 141:81–90. doi: 10.1016/j.meatsci.2018.03.018.
  • Otto G, Roehe R, Looft H, Thoelking L, Kalm E. 2004. Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Meat Sci. 68(3):401–409. doi: 10.1016/j.meatsci.2004.04.007.
  • Poleti MD, Moncau CT, Silva-Vignato B, Rosa AF, Lobo AR, Cataldi TR, Negrão JA, Silva SL, Eler JP, de Carvalho Balieiro JC. 2018. Label-free quantitative proteomic analysis reveals muscle contraction and metabolism proteins linked to ultimate pH in bovine skeletal muscle. Meat Sci. 145:209–219. doi: 10.1016/j.meatsci.2018.06.041.
  • Ponsuksili S, Trakooljul N, Basavaraj S, Hadlich F, Murani E, Wimmers K. 2019. Epigenome wide skeletal muscle DNA methylation profiles at the background of distinct metabolic types and ryanodine receptor variation in pigs. BMC Genom. 20:1–16.
  • Qi Y, Li Y, Zhang Y, Zhang L, Wang Z, Zhang X, Gui L, Huang J. 2015. IFI6 inhibits apoptosis via mitochondrial-dependent pathway in dengue virus 2 infected vascular endothelial cells. PLOS One. 10(8):e0132743. doi: 10.1371/journal.pone.0132743.
  • Rauluseviciute I, Drabløs F, Rye MB. 2020. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC Med Genom. 13(1):1–15.
  • Reardon W, Mullen A, Sweeney T, Hamill R. 2010. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci. 86(2):270–275. doi: 10.1016/j.meatsci.2010.04.013.
  • Rosenvold K, Andersen HJ. 2003. Factors of significance for pork quality—A review. Meat Sci. 64(3):219–237. doi: 10.1016/S0309-1740(02)00186-9.
  • Ryu Y, Kim B. 2005. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 71(2):351–357. doi: 10.1016/j.meatsci.2005.04.015.
  • Siegfried Z, Simon I. 2010. DNA methylation and gene expression. Wiley Interdiscip Rev. 2(3):362–371.
  • Srikanchai T, Murani E, Wimmers K, Ponsuksili S. 2010. Four loci differentially expressed in muscle tissue depending on water-holding capacity are associated with meat quality in commercial pig herds. Mol Biol Rep. 37(1):595–601. doi: 10.1007/s11033-009-9856-0.
  • Strasburg G, Chiang W. 2009. Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality. Poult Sci. 88(7):1497–1505. doi: 10.3382/ps.2009-00181.
  • Tahara E, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, Yamazaki R, Ishihara H, Yasui W, Barrett JC, et al. 2005. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother. 54(8):729–740. doi: 10.1007/s00262-004-0645-2.
  • Traore S, Aubry L, Gatellier P, Przybylski W, Jaworska D, Kajak-Siemaszko K, Sante  , Lhoutellier V. 2012. Higher drip loss is associated with protein oxidation. Meat Sci. 90(4):917–924. doi: 10.1016/j.meatsci.2011.11.033.
  • Villicaña S, Bell JT. 2021. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol. 22(1):127. doi: 10.1186/s13059-021-02347-6.
  • Vohra M, Sharma AR, Prabhu BN, Rai PS. 2020. SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: a systematic review. Public Health Genom. 23(5-6):155–170. doi: 10.1159/000510253.
  • Wang X, Kadarmideen HN. 2019. An epigenome-wide DNA methylation map of testis in pigs for study of complex traits. Front Genet. 10:405. doi: 10.3389/fgene.2019.00405.
  • Wang J, Zeng Q, Wang H, Chen W, Zeng Y. 2018. Relationships between ultimate pH and antioxidant enzyme activities and gene expression in pork loins. Anim Sci J. 89(9):1331–1338. doi: 10.1111/asj.13055.
  • Wang K, Wu P, Wang S, Ji X, Chen D, Jiang A, Xiao W, Gu Y, Jiang Y, Zeng Y, et al. 2021. Genome-wide DNA methylation analysis in Chinese Chenghua and Yorkshire pigs. BMC Genom Data. 22(1):21. doi: 10.1186/s12863-021-00977-0.
  • Wang W, Xue W, Zhou X, Zhang L, Wu J, Qu L, Jin B, Zhang X, Ma F, Xu X. 2012. Effects of candidate genes’ polymorphisms on meat quality traits in pigs. Acta Agric Scand A Anim Sci. 62(3):120–126.
  • Yang Y, Zhou R, Mu Y, Hou X, Tang Z, Li K. 2016. Genome-wide analysis of DNA methylation in obese, lean and miniature pig breeds. Sci Rep. 6(1):1–12.
  • Zhang C, Wang Z, Bruce H, Janz J, Goddard E, Moore S, Plastow G. 2014. Associations between single nucleotide polymorphisms in 33 candidate genes and meat quality traits in commercial pigs. Anim Genet. 45(4):508–516. doi: 10.1111/age.12155.
  • Zhang N. 2018. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim Nutr. 4(1):11–16. doi: 10.1016/j.aninu.2017.08.009.
  • Zhang R, Neuhoff C, Yang Q, Cinar MU, Uddin MJ, Tholen E, Schellander K, Tesfaye D. 2022. Sulforaphane enhanced proliferation of porcine satellite cells via epigenetic augmentation of SMAD7. Anim. 12(11):1365. doi: 10.3390/ani12111365.