997
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functional characterisation of Euglena gracilis following growth medium enrichment

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 53-64 | Received 31 Jul 2023, Accepted 25 Nov 2023, Published online: 07 Dec 2023

References

  • Abbasi AM, Guo X, Fu X, Zhou L, Chen Y, Zhu Y, Yan H, Liu RH. 2015. Comparative assessment of phenolic content and in vitro antioxidant capacity in the pulp and peel of mango cultivars. Int J Mol Sci. 16(6):13507–13527. doi:10.3390/ijms160613507.
  • Abdelaleem MA, Elbassiony K. 2021. Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa). Braz J Biol. 81(3):806–813. doi:10.1590/1519-6984.232270.
  • Abou-Shanab RA, Raghavulu SV, Hassanin NM, Kim S, Kim YJ, Oh SU, Oh YK, Jeon BH. 2012. Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum. Afr J Biotechnol. 11(96):16270–16276.
  • Aemiro A, Watanabe S, Suzuki K, Hanada M, Umetsu K, Nishida T. 2019. Effect of substituting soybean meal with euglena (Euglena gracilis) on methane emission and nitrogen efficiency in sheep. Anim Sci J. 90(1):71–80. doi:10.1111/asj.13121.
  • Alam MA, Xu JL, Wang Z. 2020. Microalgae biotechnology for food, health and high value products. Singapore: Springer Singapore.
  • AOAC. 2005. Official methods of analysis of the Association of Analytical Chemists International. Official methods. Gaithersburg (MD): AOAC.
  • AOCS. 2009. Approved Procedure Ba 6a-05: crude fiber analysis in feeds by filter bag technique. In: Official methods and recommended practices. 4th ed. Champaign (IL): American Oil Chemists’ Society.
  • Attard E. 2013. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 8(1):48–53. doi:10.2478/s11535-012-0107-3.
  • Barsanti L, Vismara R, Passarelli V, Gualtieri P. 2001. Paramylon (β-1, 3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J Appl Phycol. 13(1):59–65. doi:10.1023/A:1008105416065.
  • Barsanti L, Birindelli L, Gualtieri P. 2022. Paramylon and other bioactive molecules in micro and macroalgae. Int J Mol Sci. 23(15):8301. doi:10.3390/ijms23158301.
  • Bellet C, Rushton J. 2019. World food security, globalisation and animal farming: unlocking dominant paradigms of animal health science. Rev Sci Tech. 38(2):383–393. doi:10.20506/rst.38.2.2993.
  • Bernard E, Guéguen C. 2023. Molecular changes in phenolic compounds in Euglena gracilis cells grown under metal stress. Front Plant Sci. 14:1099375. doi:10.3389/fpls.2023.1099375.
  • Bhattad T, Koradiya A, Prakash G. 2021. Prebiotic activity of paramylon isolated from heterotrophically grown Euglena gracilis. Heliyon. 7(9):e07884. doi:10.1016/j.heliyon.2021.e07884.
  • Blum JJ, Buetow DE. 1963. Biochemical changes during acetate deprivation and repletion in Euglena. Exp Cell Res. 29(3):407–421. doi:10.1016/s0014-4827(63)80004-x.
  • Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. 2017. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J Pharm Biomed Anal. 143:228–236. doi:10.1016/j.jpba.2017.05.049.
  • Čagalj M, Skroza D, Tabanelli G, Özogul F, Šimat V. 2021. Maximizing the antioxidant capacity of Padina pavonica by choosing the right drying and extraction methods. Processes. 9(4):587. doi:10.3390/pr9040587.
  • Cakmak I. 2000. Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146(2):185–205. doi:10.1046/j.1469-8137.2000.00630.x.
  • Chen GZ, Haglund T, Yanez D. 2019. The effect of iron concentration on Euglena gracilis growth rate. Expedition. 9.
  • Choi SW, Park IK, Park BS. 2004. Effect of dietary supplementation of fresh water algae euglena on the performance and fatty acid composition of breast muscle of broiler chickens. KJPS. 31(4):273–281.
  • Cook JR. 1968. The cultivation and growth of Euglena. In: Buetow DE, editor. The biology of Euglena. Vol. 1. New York (NY): Academic Press; p. 243–314.
  • Constantopoulos G, Bloch K. 1967. Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem. 242(15):3538–3542. doi:10.1016/S0021-9258(18)95895-3.
  • EFSA Panel on Nutrition NF and FA (NDA), Turck D, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, et al. 2020. Safety of dried whole cell Euglena gracilis as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 18(5):6100, 15.
  • FDA. 2014. GRAS Notice No. 513 for Euglena gracilis containing beta-1,3-glucan. http://wayback.archiveit.org/7993/20171031042059/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM403333.pdf.
  • Frazzini S, Scaglia E, Dell’Anno M, Reggi S, Panseri S, Giromini C, Lanzoni D, Sgoifo Rossi CA, Rossi L. 2022. Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: an in vitro study. Antioxidants. 11(5):992. doi:10.3390/antiox11050992.
  • Friedman M, Jürgens HS. 2000. Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem. 48(6):2101–2110. doi:10.1021/jf990489j.
  • Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. 2019. Bioproducts from Euglena gracilis: synthesis and applications. Front Bioeng Biotechnol. 7:108. doi:10.3389/fbioe.2019.00108.
  • Goulas V, Hadjisolomou A. 2019. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. Food Sci Technol. 101:269–275. doi:10.1016/j.lwt.2018.11.003.
  • Hilt KL, Gordon PR, Hein A, Caulfield JP, Falchuk KH. 1987. Effects of iron‐, manganese‐, or magnesium‐deficiency on the growth and morphology of Euglena gracilis. J Protozool. 34(2):192–198. doi:10.1111/j.1550-7408.1987.tb03159.x.
  • Ivušić F, Šantek B. 2015. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst Eng. 38(6):1103–1112. doi:10.1007/s00449-015-1353-3.
  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol. 144(1):278–285. doi:10.1104/pp.107.095794.
  • Jung JM, Kim JY, Jung S, Choi YE, Kwon EE. 2021. Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions. J Clean Prod. 291:125218.
  • Kottuparambil S, Thankamony RL, Agusti S. 2019. Euglena as a potential natural source of value-added metabolites. A review. Algal Res. 37:154–159. doi:10.1016/j.algal.2018.11.024.
  • Kováčik J, Klejdus B. 2008. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep. 27(3):605–615. doi:10.1007/s00299-007-0490-9.
  • Klimek-Szczykutowicz M, Szopa A, Blicharska E, Dziurka M, Komsta Ł, Ekiert H. 2019. Bioaccumulation of selected macro-and microelements and their impact on antioxidant properties and accumulation of glucosinolates and phenolic acids in in vitro cultures of Nasturtium officinale (watercress) microshoots. Food Chem. 300:125184. doi:10.1016/j.foodchem.2019.125184.
  • Klinthong W, Yang YH, Huang CH, Tan CS. 2015. A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res. 15(2):712–742. doi:10.4209/aaqr.2014.11.0299.
  • Kozera W, Barczak B, Knapowski T, Ralcewicz M. 2013. Total and fractional contents of proteins in bean seeds under the conditions of varied fertilisation with microelements. J Cent Eur Agric. 14(1):319–327. doi:10.5513/JCEA01/14.1.1201.
  • Lim KJA, Cabajar AA, Lobarbio CFY, Taboada EB, Lacks DJ. 2019. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. J Food Sci Technol. 56(5):2536–2544. doi:10.1007/s13197-019-03732-7.
  • Lanzoni D, Skřivanová E, Rebucci R, Crotti A, Baldi A, Marchetti L, Giromini C. 2023. Total phenolic content and antioxidant activity of in vitro digested hemp-based products. Foods. 12(3):601. doi:10.3390/foods12030601.
  • Ma Y, Yang Y, Gao J, Feng J, Shang Y, Wei Z. 2020. Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food Chem Toxicol. 135:110941. doi:10.1016/j.fct.2019.110941.
  • Marčenko E. 1972. Interaction of mineral nutrition and temperature on the growth of Euglena gracilis. Acta Bot Croat. 31(1):61–70.
  • Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. 2019. Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants. 8(8):279. doi:10.3390/plants8080279.
  • Oda Y, Nakano Y, Kitaoka S. 1982. Utilization and toxicity of exogenous amino acids in Euglena gracilis. Microbiology. 128(4):853–858. doi:10.1099/00221287-128-4-853.
  • Pieniazek J, Williams MP, Latham R, Walters H, Wickersham TA, Levine R, Lebrun J, Caldwell D, Lee T. 2016. Evaluation of an algal beta-1,3-glucan on broiler growth performance and immune response. Int J Poultry Sci. 15(5):201–210. doi:10.3923/ijps.2016.201.210.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9–10):1231–1237. doi:10.1016/s0891-5849(98)00315-3.
  • Regnault A, Piton F, Calvayrac R. 1990. Growth, proteins and chlorophyll in Euglena adapted to various C/N balances. Phytochemistry. 29(12):3711–3715. doi:10.1016/0031-9422(90)85318-A.
  • Ritala A, Häkkinen ST, Toivari M, Wiebe MG. 2017. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol. 8:2009. doi:10.3389/fmicb.2017.02009.
  • Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T. 2017. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environ Chang. 47:1–12. doi:10.1016/j.gloenvcha.2017.09.001.
  • Sampaio B, Bara MTF, Ferri PH, Santos SDC, Paula JRD. 2011. Influence of environmental factors on the concentration of phenolic compounds in leaves of Lafoensia pacari. Rev Bras Farmacogn. 21(6):1127–1137. doi:10.1590/S0102-695X2011005000177.
  • Šantek B, Felski M, Friehs K, Lotz M, Flaschel E. 2010. Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng Life Sci. 10(2):165–170. doi:10.1002/elsc.200900077.
  • Schwarzhans JP, Cholewa D, Grimm P, Beshay U, Risse JM, Friehs K, Flaschel E. 2015. Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol. 27(4):1389–1399. doi:10.1007/s10811-014-0458-4.
  • Skov J, Kania PW, Holten-Andersen L, Fouz B, Buchmann K. 2012. Immunomodulatory effects of dietary β-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish Shellfish Immunol. 33(1):111–120. doi:10.1016/j.fsi.2012.04.009.
  • Sorrentino G. 2021. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rend Lincei Sci Fis Nat. 32(2):233–243. doi:10.1007/s12210-021-00979-1.
  • Tierney MS, Smyth TJ, Hayes M, Soler-Vila A, Croft AK, Brunton N. 2013. Influence of pressurised liquid extraction and solid-liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae. Int J of Food Sci Tech. 48(4):860–869. doi:10.1111/ijfs.12038.
  • Turkmen N, Sari F, Velioglu YS. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 99(4):835–841. doi:10.1016/j.foodchem.2005.08.034.
  • United Nations Department of Economic and Social Affairs PD. 2022. World population prospects 2022: summary of results. UN DESA/POP/2022/TR/NO. 3.
  • Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG. 2018. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLOS One. 13(4):e0195329. doi:10.1371/journal.pone.0195329.
  • Watanabe F, Yoshimura K, Shigeoka S. 2017. Biochemistry and physiology of vitamins in Euglena. Adv Exp Med Biol. 979:65–90. doi:10.1007/978-3-319-54910-1_5.
  • Zeng M, Hao W, Zou Y, Shi M, Jiang Y, Xiao P, Lei A, Hu Z, Zhang W, Zhao L, et al. 2016. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement “Euglena”. BMC Biotechnol. 16(1):49. doi:10.1186/s12896-016-0279-4.
  • Zoltner M, Field MC. 2022. Microbe profile: Euglena gracilis: photogenic, flexible and hardy. Microbiology. 168(9):001241. doi:10.1099/mic.0.001241.