1,005
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical composition, fatty acid profile, antioxidant content, and microbiological loads of lesser mealworm, mealworm, and superworm larvae

, , , , , , & show all
Pages 125-137 | Received 03 Sep 2023, Accepted 06 Dec 2023, Published online: 04 Jan 2024

References

  • Adámková A, Kouřimská L, Borkovcová M, Kulma M, Mlček J. 2016. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potr S J F Sci. 10(1):663–671. doi: 10.5219/609.
  • AOAC. 1995. Official methods of analysis of the association of official analytical chemists. 15th ed. Arlington, Virgina, USA: the Association of Official Analytical Chemists, Inc.
  • Azagoh C, Ducept F, Garcia R, Rakotozafy L, Cuvelier M-E, Keller S, Lewandowski R, Mezdour S. 2016. Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Res Int. 88(Pt A):24–31. doi: 10.1016/j.foodres.2016.06.010.
  • Cacchiarelli C, Fratini F, Puccini M, Vitolo S, Paci G, Mancini S. 2022. Effects of different blanching treatments on colour and microbiological profile of Tenebrio molitor and Zophobas morio larvae. LWT. 157:113112. doi: 10.1016/j.lwt.2022.113112.
  • Cadinu LA, Barra P, Torre F, Delogu F, Madau FA. 2020. Insect rearing: potential, challenges, and circularity. Sustainability. 12(11):4567. doi: 10.3390/su12114567.
  • Caparros Megido R, Poelaert C, Ernens M, Liotta M, Blecker C, Danthine S, Tyteca E, Haubruge É, Alabi T, Bindelle J, et al. 2018. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res Int. 106(2017):503–508. doi: 10.1016/j.foodres.2018.01.002.
  • Cappellozza S, Leonardi MG, Savoldelli S, Carminati D, Rizzolo A, Cortellino G, Terova G, Moretto E, Badaile A, Concheri G, et al. 2019. A first attempt to produce proteins from insects by means of a circular economy. Animals. 9(5):278. doi: 10.3390/ani9050278.
  • Cartoni Mancinelli A, Mattioli S, Twining C, Dal Bosco A, Donoghue AM, Arsi K, Angelucci E, Chiattelli D, Castellini C. 2022. Poultry meat and eggs as an alternative source of n-3 long-chain polyunsaturated fatty acids for human nutrition. Nutrients. 14(9):1969. doi: 10.3390/nu14091969.
  • Christie WW. 1982. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J Lipid Res. 23(7):1072–1075.
  • Costa S, Pedro S, Lourenço H, Batista I, Teixeira B, Bandarra NM, Murta D, Nunes R, Pires C. 2020. Evaluation of Tenebrio molitor larvae as an alternative food source. Nfs J. 21:57–64. doi: 10.1016/j.nfs.2020.10.001.
  • Dreassi E, Cito A, Zanfini A, Materozzi L, Botta M, Francardi V. 2017. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: tenebrionidae). Lipids. 52(3):285–294. doi: 10.1007/s11745-016-4220-3.
  • Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226(1):497–509. doi: 10.1016/S0021-9258(18)64849-5.
  • Francis F, Haubruge E, Dierickx P. 2002. Glutathione S-transferase isoenzymes in the two-spot ladybird, Adalia bipunctata (Coleoptera: coccinellidae). Arch Insect Biochem Physiol. 49(3):158–166. doi: 10.1002/arch.10016.
  • Ghaly AE, Alkoaik FN. 2009. The yellow mealworm as a novel source of protein. American J of AgricBiol Sci. 4(4):319–331. doi: 10.3844/ajabssp.2009.319.331.
  • Grabowski NT, Klein G. 2017a. Microbiological analysis of raw edible insects. JIFF. 3(1):7–14. doi: 10.3920/JIFF2016.0004.
  • Grabowski NT, Klein G. 2017b. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends Food Sci Technol. 63(2017):80–90. doi: 10.1016/j.tifs.2017.01.007.
  • Halloran A, Flore R, Vantomme P, Roos N. 2018. Edible insects in sustainable food systems. Cham: Springer International Publishing. doi: 10.1007/978-3-319-74011-9.
  • Harsányi E, Juhász C, Kovács E, Huzsvai L, Pintér R, Fekete G, Varga ZI, Aleksza L, Gyuricza C. 2020. Evaluation of organic wastes as substrates for rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus larvae as alternative feed supplements. Insects. 11(9):604. doi: 10.3390/insects11090604.
  • Janssen RH, Vincken J-P, van den Broek LAM, Fogliano V, Lakemond CMM. 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem. 65(11):2275–2278. doi: 10.1021/acs.jafc.7b00471.
  • Klunder HC, Wolkers-Rooijackers J, Korpela JM, Nout MJR. 2012. Microbiological aspects of processing and storage of edible insects. Food Control. 26(2):628–631. doi: 10.1016/j.foodcont.2012.02.013.
  • Kulma M, Kouřimská L, Homolková D, Božik M, Plachý V, Vrabec V. 2020. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J Food Compos Anal. 92:103570. doi: 10.1016/j.jfca.2020.103570.
  • Liceaga AM, Aguilar-Toalá JE, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. 2022. Insects as an alternative protein source. Annu Rev Food Sci Technol. 13(1):19–34. doi: 10.1146/annurev-food-052720-112443.
  • Mancini S, Fratini F, Provera I, Dovicchi J, Tuccinardi T, Minieri S, Papini RA, Forzan M, Paci G. 2022a. Growth performances, chemical composition, and microbiological loads of mealworm reared with brewery spent grains and bread leftovers. Ital J Anim Sci. 21(1):1419–1429. doi: 10.1080/1828051X.2022.2120422.
  • Mancini S, Fratini F, Tuccinardi T, Turchi B, Nuvoloni R, Paci G. 2019a. Effects of different blanching treatments on microbiological profile and quality of the mealworm (Tenebrio molitor). JIFF. 5(3):225–234. doi: 10.3920/JIFF2018.0034.
  • Mancini S, Fratini F, Turchi B, Mattioli S, Dal Bosco A, Tuccinardi T, Nozic S, Paci G. 2019b. Former foodstuff products in Tenebrio molitor rearing: effects on growth, chemical composition, microbiological load, and antioxidant status. Animals. 9(8):484. doi: 10.3390/ani9080484.
  • Mancini S, Mattioli S, Paolucci S, Fratini F, Dal Bosco A, Tuccinardi T, Paci G. 2021. Effect of cooking techniques on the in vitro protein digestibility, fatty acid profile, and oxidative status of mealworms (Tenebrio molitor). Front Vet Sci. 8:675572. doi: 10.3389/fvets.2021.675572.
  • Mancini S, Medina I, Iaconisi V, Gai F, Basto A, Parisi G. 2018. Impact of black soldier fly larvae meal on the chemical and nutritional characteristics of rainbow trout fillets. Animal. 12(8):1672–1681. doi: 10.1017/S1751731117003421.
  • Mancini S, Sogari G, Espinosa Diaz S, Menozzi D, Paci G, Moruzzo R. 2022b. Exploring the future of edible insects in Europe. Foods. 11(3):455. doi: 10.3390/foods11030455.
  • Mattioli S, Dal Bosco A, Castellini C, Falcinelli B, Sileoni V, Marconi O, Mancinelli AC, Cotozzolo E, Benincasa P. 2019. Effect of heat‐ and freeze‐drying treatments on phytochemical content and fatty acid profile of alfalfa and flax sprouts. J Sci Food Agric. 99(8):4029–4035. doi: 10.1002/jsfa.9630.
  • Mattioli S, Machado Duarte JM, Castellini C, D'Amato R, Regni L, Proietti P, Businelli D, Cotozzolo E, Rodrigues M, Dal Bosco A. 2018. Use of olive leaves (whether or not fortified with sodium selenate) in rabbit feeding: effect on performance, carcass and meat characteristics, and estimated indexes of fatty acid metabolism. Meat Sci. 143:230–236. doi: 10.1016/j.meatsci.2018.05.010.
  • Mattioli S, Paci G, Fratini F, Dal Bosco A, Tuccinardi T, Mancini S. 2021. Former foodstuff in mealworm farming: effects on fatty acids profile, lipid metabolism and antioxidant molecules. LWT. 147:111644. doi: 10.1016/j.lwt.2021.111644.
  • Mattioli S, Rosignoli P, D'Amato R, Fontanella MC, Regni L, Castellini C, Proietti P, Elia AC, Fabiani R, Beone GM, et al. 2020. Effect of feed supplemented with selenium-enriched olive leaves on plasma oxidative status, mineral profile, and leukocyte DNA damage in growing rabbits. Animals. 10(2):274. doi: 10.3390/ani10020274.
  • Moruzzo R, Mancini S, Guidi A. 2021a. Edible insects and sustainable development goals. Insects. 12(6):557. doi: 10.3390/insects12060557.
  • Moruzzo R, Riccioli F, Espinosa Diaz S, Secci C, Poli G, Mancini S. 2021b. Mealworm (Tenebrio molitor): potential and challenges to promote circular economy. Animals. 11(9):2568. doi: 10.3390/ani11092568.
  • Ojha S, Bußler S, Schlüter OK. 2020. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 118:600–609. doi: 10.1016/j.wasman.2020.09.010.
  • Oonincx DGAB, de Boer IJM. 2012. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment. PLOS One. 7(12):e51145. doi: 10.1371/journal.pone.0051145.
  • Oonincx DGAB, Dierenfeld ES. 2012. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 31(1):40–54. doi: 10.1002/zoo.20382.
  • Oonincx DGAB, Laurent S, Veenenbos ME, Loon JJA. 2020. Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci. 27(3):500–509. doi: 10.1111/1744-7917.12669.
  • Paul A, Frederich M, Megido RC, Alabi T, Malik P, Uyttenbroeck R, Francis F, Blecker C, Haubruge E, Lognay G, et al. 2017. Insect fatty acids: a comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J Asia Pac Entomol. 20(2):337–340. doi: 10.1016/j.aspen.2017.02.001.
  • R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.
  • Regulation of the Commission. 2017/893. Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R0893.
  • Regulation of the Commission. 2021/1925. Commission Regulation (EU) 2021/1925 of 5 November 2021 amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method. https://eur-lex.europa.eu/legal-content/EN/TXT/?toc=OJ%3AL%3A2021%3A393%3AFULL&uri=uriserv%3AOJ.L_.2021.393.01.0004.01.ENG.
  • Regulation of the Commission. 2021/1372 - Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32021R1372.
  • Rossi G, Mattioli S, Rondoni G, Bosco AD, Servili M, Castellini C, Conti E. 2022. Characterisation of fatty acid profiles of Tenebrio molitor larvae reared on diets enriched with edible oils. JIFF. 8(8):901–912. doi: 10.3920/JIFF2021.0164.
  • Rumbos CI, Bliamplias D, Gourgouta M, Michail V, Athanassiou CG. 2021. Rearing Tenebrio molitor and Alphitobius diaperinus larvae on seed cleaning process byproducts. Insects. 12(4):293. doi: 10.3390/insects12040293.
  • Rumpold BA, Schlüter OK. 2013. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 57(5):802–823. doi: 10.1002/mnfr.201200735.
  • Soares Araújo RR, dos Santos Benfica TAR, Ferraz VP, Moreira Santos E. 2019. Nutritional composition of insects Gryllus assimilis and Zophobas morio: potential foods harvested in Brazil. J Food Compos Anal. 76:22–26. doi: 10.1016/j.jfca.2018.11.005.
  • Soetemans L, Gianotten N, Bastiaens L. 2020. Agri-food side-stream inclusion in the diet of Alphitobius diaperinus. Part 2: impact on larvae composition. Insects. 11(3):190. doi: 10.3390/insects11030190.
  • Sokolovskiǐ V v. 1988. Tiolovye antioksidanty v molekuliarnykh mekhanizmakh nespetsificheskoǐ reaktsii organizma na ékstremal’noe vozdeǐstvie (obzor). [Thiol antioxidants in molecular mechanisms of nonspecific reaction of the body to exposure to extreme factors (review of the literature)]. Voprosy Meditsinskoj Khimii. 34(6):2–11.
  • Son Y-J, Choi SY, Hwang I-K, Nho CW, Kim SH. 2020. Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? Foods. 9(1):40. doi: 10.3390/foods9010040.
  • StataCorp. 2015. Stata Statistical Software: release 14. Stata Statistical Software.
  • Steenbock H, Nelson EM. 1923. Fat-soluble vitamine. J Biol Chem. 56(2):355–373. doi: 10.1016/S0021-9258(18)85573-9.
  • Stoops J, Crauwels S, Waud M, Claes J, Lievens B, van Campenhout L. 2016. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol. 53(Pt B):122–127. doi: 10.1016/j.fm.2015.09.010.
  • Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, et al. 2021a. Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. Efsa J. 19(8):e06778. doi: 10.2903/j.efsa.2021.6778.
  • Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, et al. 2022. Safety of frozen and freeze‐dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. Efsa J. 20(7):e07325. doi: 10.2903/j.efsa.2022.7325.
  • Turck D, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, et al. 2021b. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to regulation (EU) 2015/2283. Efsa J. 19(1):e06343. doi: 10.2903/j.efsa.2021.6343.
  • Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, et al. 2021. The evolutionary ecology of fatty‐acid variation: implications for consumer adaptation and diversification. Bates A, editor. Ecol Lett. 24(8):1709–1731. doi: 10.1111/ele.13771.
  • Tzompa-Sosa DA, Dewettinck K, Gellynck X, Schouteten JJ. 2021. Replacing vegetable oil by insect oil in food products: effect of deodorization on the sensory evaluation. Food Res Int. 141:110140. doi: 10.1016/j.foodres.2021.110140.
  • Tzompa-Sosa DA, Yi L, van Valenberg HJF, Lakemond CMM. 2019. Four insect oils as food ingredient: physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. JIFF. 5(4):279–292. doi: 10.3920/JIFF2018.0020.
  • van Broekhoven S, Oonincx DGAB, van Huis A, van Loon JJA. 2015. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol. 73:1–10. doi: 10.1016/j.jinsphys.2014.12.005.
  • Vandeweyer D, Crauwels S, Lievens B, van Campenhout L. 2017a. Microbial counts of mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from different rearing companies and different production batches. Int J Food Microbiol. 242:13–18. doi: 10.1016/j.ijfoodmicro.2016.11.007.
  • Vandeweyer D, Lenaerts S, Callens A, van Campenhout L. 2017b. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control. 71:311–314. doi: 10.1016/j.foodcont.2016.07.011.
  • van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects. Future prospects for food and feed security. Rome.
  • van Huis A, Oonincx DGAB. 2017. The environmental sustainability of insects as food and feed. A review. Agron Sustain Dev. 37(5):43. doi: 10.1007/s13593-017-0452-8.
  • Vahmani P, Rolland DC, McAllister TA, Block HC, Proctor SD, Guan LL, Prieto N, López-Campos O, Aalhus JL, Dugan MER. 2017. Effects of feeding steers extruded flaxseed on its own before hay or mixed with hay on animal performance, carcass quality, and meat and hamburger fatty acid composition. Meat Sci. 131:9–17. doi: 10.1016/j.meatsci.2017.04.008.
  • Wynants E, Crauwels S, Verreth C, Gianotten N, Lievens B, Claes J, van Campenhout L. 2018. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 70:181–191. doi: 10.1016/j.fm.2017.09.012.
  • Wynants E, Frooninckx L, van Miert S, Geeraerd A, Claes J, van Campenhout L. 2019. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: survival in the substrate and transmission to the larvae. Food Control. 100:227–234. doi: 10.1016/j.foodcont.2019.01.026.
  • Yi L, Lakemond CMM, Sagis LMC, Eisner-Schadler V, van Huis A, van Boekel MAJS. 2013. Extraction and characterisation of protein fractions from five insect species. Food Chem. 141(4):3341–3348. doi: 10.1016/j.foodchem.2013.05.115.
  • Zaspel BJ, Csallany AS. 1983. Determination of alpha-tocopherol in tissues and plasma by high-performance liquid chromatography. Anal Biochem. 130(1):146–150. doi: 10.1016/0003-2697(83)90661-9.
  • Zhang X, Tang H, Chen G, Qiao L, Li J, Liu B, Liu Z, Li M, Liu X. 2019. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur Food Res Technol. 245(12):2631–2640. doi: 10.1007/s00217-019-03336-7.