474
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect and mode of action of different doses and sources of zinc in weaning pigs using a meta-analytical and systematic review approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 241-258 | Received 18 Sep 2023, Accepted 26 Dec 2023, Published online: 07 Feb 2024

References

  • Adewole DI, Kim IH, Nyachoti CM. 2016. Gut health of pigs: challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives—a review. Asian-Australas J Anim Sci. 29(7):909–924. doi:10.5713/ajas.15.0795.
  • Alam AN, Sarker SA, Wahed MA, Khatun M, Rahaman MM. 1994. Enteric protein loss and intestinal permeability changes in children during acute shigellosis and after recovery: effect of zinc supplementation. Gut. 35(12):1707–1711. doi:10.1136/gut.35.12.1707.
  • Al-Sadi R, Boivin M, Ma T. 2009. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed). 14(7):2765–2778. doi:10.2741/3413.
  • Ao T, Pierce JL, Power R, Pescatore AJ, Cantor AH, Dawson KA, Ford MJ. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poult Sci. 88(10):2171–2175. doi:10.3382/ps.2009-00117.
  • Blaabjerg K, Poulsen HD. 2017. The use of zinc and copper in pig production. DCA – Nationalt Center for Jordbrug Og Fødevarer. 23:1–17. https://pure.au.dk/ws/files/116535883/2017_05_01_Pigs_zinc_and_copper_review.pdf
  • Bonetti A, Tugnoli B, Piva A, Grilli E. 2021. Towards zero zinc oxide: feeding strategies to manage post-weaning diarrhea in pigs. Animals. 11(3):642. doi:10.3390/ani11030642.
  • Bosi P, Merialdi G, Sarli G, Casini L, Gremokolini C, Preziosi R, Brunetti B, Trevisi P. 2003. Effects of doses of ZnO or Zn-Glutamate on growth performance, gut characteristics, health and immunity of early-weaned pigs orally challenged with E. coli K88. Ital J Anim Sci. 2:361–363. doi:10.4081/ijas.2003.11676011.
  • Bouwhuis MA, Sweeney T, Mukhopadhya A, Thornton K, McAlpine PO, O'Doherty JV. 2017. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence. J Anim Physiol Anim Nutr (Berl). 101(6):1273–1285., doi:10.1111/jpn.12647.
  • Broom LJ, Miller HM, Kerr KG, Knapp JS. 2006. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned pigs. Res Vet Sci. 80(1):45–54. doi:10.1016/j.rvsc.2005.04.004.
  • Brugger D, Hanauer M, Ortner J, Windisch WM. 2021. The response of zinc transporter gene expression of selected tissues in a pig model of subclinical zinc deficiency. J Nutr Biochem. 90:108576. doi:10.1016/j.jnutbio.2020.108576.
  • Buff CE, Bollinger DW, Ellersieck MR, Brommelsiek WA, Veum TL. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J Anim Sci. 83(10):2380–2386. doi:10.2527/2005.83102380x.
  • Byun Y-J, Lee CY, Kim MH, Jung DY, Han JH, Jang I, Song YM, Park B-C. 2018. Effects of dietary supplementation of a lipid-coated zinc oxide product on the fecal consistency, growth, and morphology of the intestinal mucosa of weanling pigs. JAST. 59:29. doi:10.1186/s40781-017-0159-z.
  • Campbell JM, Crenshaw JD, Polo J. 2013. The biological stress of early weaned pigs. J. Anim. Sci. Biotechnol. 4:19. doi:10.1186/2049-1891-4-19.
  • Carlson MS, Hill GM, Link JE. 1999. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations. J Anim Sci. 77(5):1199–1207. doi:10.2527/1999.7751199x.
  • Carlson D, Poulsen HD, Sehested J. 2004. Influence of weaning and effect of post weaning dietary zinc and copper on electrophysiological response to glucose, theophylline and 5-HT in pig small intestinal mucosa. Comp Biochem Physiol A Mol Integr Physiol. 137(4):757–765. doi:10.1016/j.cbpb.2004.02.011.
  • Carlson D, Poulsen HD, Vestergaard M. 2004. Additional dietary zinc for weaning pigs is associated with elevated concentrations of serum IGF-I. J Anim Physiol Anim Nutr (Berl). 88(9-10):332–339. doi:10.1111/j.1439-0396.2004.00488.x.
  • Case CL, Carlson MS. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim Sci. 80(7):1917–1924. doi:10.2527/2002.8071917x.
  • Castillo M, Martín-Orúe SM, Nofrarías M, Manzanilla EG, Gasa J. 2007. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet Microbiol. 124(3-4):239–247. doi:10.1016/j.vetmic.2007.04.026.
  • Chai W, Zakrzewski SS, Günzel D, Pieper R, Wang Z, Twardziok S, Janczyk P, Osterrieder N, Burwinkel M. 2014. High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in pigs. BMC Vet Res. 10(1):75. doi:10.1186/1746-6148-10-75.
  • Cho JH, Upadhaya SD, Kim IH. 2015. Effects of dietary supplementation of modified zinc oxide on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling pigs. Anim Sci J. 86(6):617–623. doi:10.1111/asj.12329.
  • Cui Y, Tian Z, Lu H, Deng D, Liu Z, Rong T, Yu M, Ma X. 2021. Zinc oxide nanoparticles improve gut health and reduce faecal zinc excretion in pigs. Livest. Sci. 251:104610. doi:10.1016/j.livsci.2021.104610.
  • Diao H, Yan J, Li S, Kuang S, Wei X, Zhou M, Zhang J, Huang C, He P, Tang W. 2021. Effects of dietary zinc sources on growth performance and gut health of weaned pigs. Front Microbiol. 12:771617. doi:10.3389/fmicb.2021.771617.
  • Dong X, Xu Q, Wang C, Zou X, Lu J. 2019. Supplemental-coated zinc oxide relieves diarrhoea by decreasing intestinal permeability in weanling pigs. J. Appl. Anim. Res. 47(1):362–368. doi:10.1080/09712119.2019.1645673.
  • Fairbrother JM, Nadeau É, Gyles CL. 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev. 6(1):17–39. doi:10.1079/ahr2005105.
  • Feng J, Ma WQ, Niu HH, Wu XM, Wang Y, Feng J. 2010. Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biol Trace Elem Res. 133(2):203–211. doi:10.1007/s12011-009-8431-9.
  • Grilli E, Tugnoli B, Vitari F, Domeneghini C, Morlacchini M, Piva A, Prandini A. 2015. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal. 9(11):1760–1768. doi:10.1017/S1751731115001329.
  • Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. 2021. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics. 9:641481. doi:10.3389/fphy.2021.641481.
  • Han X-Y, Ma Y-F, Lv M-Y, Wu Z-P, Qian L-C. 2014. Chitosan-zinc chelate improves intestinal structure and mucosal function and decreases apoptosis in ileal mucosal epithelial cells in weaned pigs. Br J Nutr. 111(8):1405–1411. doi:10.1017/S0007114513004042.
  • Han JH, Song MH, Kim HN, Jang I, Lee CY, Park B-C. 2018. Effects of the lipid-coated zinc oxide dietary supplement on intestinal mucosal morphology and gene expression associated with the gut health in weanling pigs challenged with enterotoxigenic Escherichia coli K88. Can J Anim Sci. 98(3):538–547. doi:10.1139/cjas-2017-0127.
  • Hansen SV, Nørskov NP, Nørgaard JV, Woyengo TA, Poulsen HD, Nielsen TS. 2022. Determination of the optimal level of dietary zinc for newly weaned pigs: a dose-response study. Animals. 12(12):1552. doi:10.3390/ani12121552.
  • Heo JM, Kim JC, Hansen CF, Mullan BP, Hampson DJ, Maribo H, Kjeldsen N, Pluske JR. 2010. Effects of dietary protein level and zinc oxide supplementation on the incidence of post-weaning diarrhoea in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Livest Sci. 133(1-3):210–213. doi:10.1016/j.livsci.2010.06.066.
  • Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post‐weaning diarrhoea without using in‐feed antimicrobial compounds. J Anim Physiol Anim Nutr. 97(2):207–237. doi:10.1111/j.1439-0396.2012.01284.x.
  • Hill GM, Mahan DC, Carter SD, Cromwell GL, Ewan RC, Harrold RL, Lewis AJ, Miller PS, Shurson GC, Veum TL, NCR-42 Committee on Swine Nutrition. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J Anim Sci. 79(4):934–941. doi:10.2527/2001.794934x.
  • Hortin AE, Bechtel PJ, Baker DH. 1991. Efficacy of pork loin as a source of zinc and effect of added cysteine on zinc bioavailability. J. Food Sci. 56(6):1505–1507. doi:10.1111/j.1365-2621.1991.tb08626.x.
  • Hu C, You Z, Zhu K, Luan Z. 2012. Effects of nano zinc oxide on growth performance and intestinal mucosal barrier in weaner pigs. Chin J Anim Nutr. 24:285–290.
  • Hu C, Song J, Li Y, Luan Z, Zhu K. 2013. Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br J Nutr. 110(4):681–688. doi:10.1017/S0007114512005508.
  • Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y. 2014. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned pigs. Asian Australas J Anim Sci. 27(8):1131–1140. doi:10.5713/ajas.2013.13737.
  • Hu L, Cheng S, Li Y, Geng S, Ma Y, Han X. 2018. Chitosan-Zn chelate downregulates TLR4-NF-κB signal pathway of inflammatory response and cell death-associated proteins compared to inorganic zinc. Biol Trace Elem Res. 184(1):92–98. doi:10.1007/s12011-017-1174-0.
  • Huang YL, Lu L, Luo XG, Liu B. 2007. An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult Sci. 86(12):2582–2589. doi:10.3382/ps.2007-00088.
  • Hudson BP, Dozier WA, Wilson JL. 2005. Broiler live performance response to dietary zinc source and the influence of zinc supplementation in broiler breeder diets. Anim. Feed Sci. Technol. 118(3-4):329–335. doi:10.1016/j.anifeedsci.2004.10.018.
  • Janczyk P, Kreuzer S, Assmus J, Nöckler K, Brockmann GA. 2013. No protective effects of high-dosage dietary zinc oxide on weaned pigs infected with Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol. 79(9):2914–2921. doi:10.1128/AEM.03577-12.
  • Jang I, Kwon CH, Ha DM, Jung DY, Kang SY, Park MJ, Han JH, Park B-C, Lee CY. 2014. Effects of a lipid-encapsulated zinc oxide supplement on growth performance and intestinal morphology and digestive enzyme activities in weanling pigs. J Anim Sci Technol. 56(1):29. doi:10.1186/2055-0391-56-29.
  • Jensen-Waern M, Melin L, Lindberg R, Johannisson A, Petersson L, Wallgren P. 1998. Dietary zinc oxide in weaned pigs—effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Res Vet Sci. 64(3):225–231. doi:10.1016/S0034-5288(98)90130-8.
  • Kleij AW, Reek JNH. 2006. Ligand-Template Directed Assembly: an efficient approach for the the supramolecular encapsulation of transition-metal catalysts. Chemistry. 12(16):4218–4227. doi:10.1002/chem.200500875.
  • Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, Vaclavkova E, Belkova J, Nevrkla P, Skladanka J, et al. 2020. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned pigs. J Animal Sci Biotechnol. 11(1):59. doi:10.1186/s40104-020-00458-x.
  • Kwon C-H, Lee CY, Han S-J, Kim S-J, Park B-C, Jang I, Han J-H. 2014. Effects of dietary supplementation of lipid-encapsulated zinc oxide on colibacillosis, growth and intestinal morphology in weaned pigs challenged with enterotoxigenic Escherichia coli. Anim Sci J. 85(8):805–813. doi:10.1111/asj.12215.
  • Lei XJ, Kim IH. 2018. Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim Feed Sci Technol. 245:117–125. doi:10.1016/j.anifeedsci.2018.06.011.
  • Lei XJ, Kim IH. 2020. Evaluation of coated zinc oxide in young pigs challenged with enterotoxigenic Escherichia coli K88. Anim Feed Sci Technol. 262:114399. doi:10.1016/j.anifeedsci.2020.114399.
  • Lei XJ, Liu ZZ, Park JH, Kim IH. 2022. Novel zinc sources as antimicrobial growth promoters for monogastric animals: a review. J Anim Sci Technol. 64(2):187–196. doi:10.5187/jast.2022.e1.
  • Li X, Yin J, Li D, Chen X, Zang J, Zhou X. 2006. Dietary supplementation with zinc oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of weanling pigs. J Nutr. 136(7):1786–1791. doi:10.1093/jn/136.7.1786.
  • Liu X, Ma Y, Chen L, Yu X, Feng J. 2020. Effects of different zinc sources on growth performance, antioxidant capacity and zinc storage of weaned pigs. Livest. Sci. 241:104181. doi:10.1016/j.livsci.2020.104181.
  • Long L, Chen J, Zhang Y, Liang X, Ni H, Zhang B, Yin Y. 2017. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning pigs. PLoS One. 12(8):e0182550. doi:10.1371/journal.pone.0182550.
  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, et al. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A. 109(5):1691–1696. doi:10.1073/pnas.1120238109.
  • Luise D, Lauridsen C, Bosi P, Trevisi P. 2019. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Animal Sci Biotechnol. 10(1):53. doi:10.1186/s40104-019-0352-7.
  • Luise D, Chalvon-Demersay T, Lambert W, Bosi P, Trevisi P. 2021. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. Ital. J. Anim. Sci. 20(1):1386–1397. doi:10.1080/1828051X.2021.1952911.
  • Luo F, Wang M, Huang L, Wu Z, Wang W, Zafar A, Tian Y, Hasan M, Shu X. 2020. Synthesis of zinc oxide eudragit FS30D nanohybrids: structure, characterization, and their application as an intestinal drug delivery system. ACS Omega. 5(20):11799–11808. doi:10.1021/acsomega.0c01216.
  • Mavromichalis I, Peter CM, Parr TM, Ganessunker D, Baker DH. 2000. Growth-promoting efficacy in young pigs of two sources of zinc oxide having either a high or a low bioavailability of zinc. J Anim Sci. 78(11):2896–2902. doi:10.2527/2000.78112896x.
  • Mazzoni M, Merialdi G, Sarli G, Trevisi P, Bosi P. 2010. Effect of two doses of different zinc sources (Inorganic vs. Chelated form) on the epithelial proliferative activity and the apoptotic index of intestinal mucosa of early-weaned pigs orally challenged with E. coli K88. Asian Australas J Anim Sci. 23(6):777–785. doi:10.5713/ajas.2010.90352.
  • McDonald P. 2002. Anim Nutr. 6th edn. Edinburgh, Great Britain: Pearson Educational Limited.
  • Meyer TA, Lindemann MD, Cromwell GL, Monegue HJ, Inocencio N. 2002. Effects of pharmacological levels of zinc as zinc oxide on fecal zinc and mineral excretion in weanling pigs11this manuscript is based on research supported in part by the kentucky agricultural experiment station and is published by the kentucky agricultural experiment station as paper no. 01-07-177. Prof. Anim. Sci. 18(2):162–168. doi:10.15232/S1080-7446(15)31506-0.
  • Milani NC, Sbardella M, Ikeda NY, Arno A, Mascarenhas BC, Miyada VS. 2017. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Technol. 227:13–23. doi:10.1016/j.anifeedsci.2017.03.001.
  • Morales J, Cordero G, Piñeiro C, Durosoy S. 2012. Zinc oxide at low supplementation level improves productive performance and health status of pigs. J Anim Sci. 90 Suppl 4(suppl_4):436–438. doi:10.2527/jas.53833.
  • Nitrayova S, Windisch W, von Heimendahl E, Müller A, Bartelt J. 2012. Bioavailability of zinc from different sources in pigs. J Anim Sci. 90 (suppl_4):185–187. doi:10.2527/jas.53895.
  • [NRC] National Research Council. 2012. Nutrient Requirements of Swine. 11th ed. Washington, DC: National Academies Press.
  • Oh SM, Kim MJ, Hosseindoust A, Kim KY, Choi YH, Ham HB, Hwang SJ, Lee JH, Cho HJ, Kang WS, et al. 2020. Hot melt extruded-based nano zinc as an alternative to the pharmacological dose of ZnO in weanling pigs. Asian Australas J Anim Sci. 33(6):992–1001. doi:10.5713/ajas.19.0140.
  • Oh H-J, Park Y-J, Cho JH, Song M-H, Gu B-H, Yun W, Lee J-H, An J-S, Kim Y-J, Lee J-S, et al. 2021. Changes in diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microbiome in weaned pigs by different forms of zinc. Animals. 11(5):1356. doi:10.3390/ani11051356.
  • Park BC, Jung DY, Kang SY, Ko YH, Ha DM, Kwon CH, Park MJ, Han JH, Jang I, Lee CY. 2015. Effects of dietary supplementation of a zinc oxide product encapsulated with lipid on growth performance, intestinal morphology, and digestive enzyme activities in weanling pigs. Anim Feed Sci Technol. 200:112–117. doi:10.1016/j.anifeedsci.2014.11.016.
  • Pearce SC, Sanz Fernandez M-V, Torrison J, Wilson ME, Baumgard LH, Gabler NK. 2015. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism. Anim Sci J. 93(10):4702–4713. doi:10.2527/jas.2015-9018.
  • Pei X, Xiao Z, Liu L, Wang G, Tao W, Wang M, Zou J, Leng D. 2019. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J Sci Food Agric. 99(3):1366–1374. doi:10.1002/jsfa.9312.
  • Peng P, Chen J, Yao K, Yin Y, Long L, Fang R. 2019. The effects of dietary supplementation with porous zinc oxide on growth performance, intestinal microbiota, morphology, and permeability in weaned pigs. Anim Sci J. 90(9):1220–1228. doi:10.1111/asj.13228.
  • Pié S, Lallès JP, Blazy F, Laffitte J, Sève B, Oswald IP. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of pigs. J Nutr. 134(3):641–647. doi:10.1093/jn/134.3.641.
  • Pieper R, Dadi TH, Pieper L, Vahjen W, Franke A, Reinert K, Zentek J. 2020. Concentration and chemical form of dietary zinc shape the porcine colon microbiome, its functional capacity and antibiotic resistance gene repertoire. Isme J. 14(11):2783–2793. doi:10.1038/s41396-020-0730-3.
  • Revy PS, Jondreville C, Dourmad JY, Nys Y. 2006. Assessment of dietary zinc requirement of weaned pigs fed diets with or without microbial phytase. J Anim Physiol Anim Nutr. 90(1-2):50–59. doi:10.1111/j.1439-0396.2005.00576.x.
  • Richards J, Zhao J, Harrell R, Atwell C, Dibner J. 2010. Trace mineral nutrition in poultry and swine. Asian Australas J Anim Sci. 23(11):1527–1534. doi:10.5713/ajas.2010.r.07.
  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E. 2003. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr. 133(12):4077–4082. doi:10.1093/jn/133.12.4077.
  • Sales J. 2013. Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: a meta-analysis. Biol Trace Elem Res. 152(3):343–349. doi:10.1007/s12011-013-9638-3.
  • Schell TC, Kornegay ET. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J Anim Sci. 74(7):1584–1593. doi:10.2527/1996.7471584x.
  • Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 75(2):163–189. doi:10.1189/jlb.0603252.
  • Schwarz S, Chaslus-Dancla E. 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res. 32(3/4):201–225. doi:10.1051/vetres:2001120.
  • Shen J, Chen Y, Wang Z, Zhou A, He M, Mao L, Zou H, Peng Q, Xue B, Wang L, et al. 2014. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned pigs. Br J Nutr. 111(12):2123–2134. doi:10.1017/S0007114514000300.
  • Shi H, Upadhaya SD, Kim IH. 2019. Comparative effects of low zinc oxide dose with or without probiotics relative to high zinc oxide dose on the performance, nutrient digestibility, blood metabolites, and noxious gases emission in weaned pigs. Can J Anim Sci. 99(4):881–889. doi:10.1139/cjas-2019-0059.
  • Siddiqi, Khwaja Salahuddin, ur Rahman, Aziz, Husen, Azamal, Tajuddin, 2018. Properties of zinc oxide nanoparticles and their activity against microbes.Nanoscale Res Lett, 13:141. doi:10.1186/s11671-018-2532-3.
  • Sloup V, Jankovská I, Nechybová S, Peřinková P, Langrova I. 2017. Zinc in the animal organism: a review. Sci Agric Bohem. doi:10.1515/sab-2017-0003.
  • Söderberg TA, Sunzel B, Holm S, Elmros T, Hallmans G, Sjöberg S. 1990. Antibacterial effect of zinc oxide in vitro. Scand J Plast Reconstr Surg Hand Surg. 24(3):193–197. doi:10.3109/02844319009041278.
  • Song ZH, Xiao K, Ke YL, Jiao LF, Hu CH. 2015. Zinc oxide influences mitogen-activated protein kinase and TGF-β1 signaling pathways, and enhances intestinal barrier integrity in weaned pigs. Innate Immun. 21(4):341–348. doi:10.1177/1753425914536450.
  • Song YM, Kim MH, Kim HN, Jang I, Han JH, Fontamillas GA, Lee CY, Park B-C. 2018. Effects of dietary supplementation of lipid-coated zinc oxide on intestinal mucosal morphology and expression of the genes associated with growth and immune function in weanling pigs. Asian-Australas J Anim Sci. 31(3):403–409. doi:10.5713/ajas.17.0718.
  • Stensland I, Kim JC, Bowring B, Collins AM, Mansfield JP, Pluske JR. 2015. A Comparison of diets supplemented with a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex, or zinc oxide, on post-weaning diarrhoea, selected bacterial populations, blood measures and performance in weaned pigs experimentally infected with enterotoxigenic E. coli. Animals. 5:1147–1168. doi:10.3390/ani5040403.
  • Su W, Li Z, Gong T, Wang F, Jin M, Wang Y, Lu Z. 2023. An alternative ZnO with large specific surface area: preparation, physicochemical characterization and effects on growth performance, diarrhea, zinc metabolism and gut barrier function of weaning pigs. Sci Total Environ. 882:163558. doi:10.1016/j.scitotenv.2023.163558.
  • Sun YB, Xia T, Wu H, Zhang WJ, Zhu YH, Xue JX, He DT, Zhang LY. 2019. Effects of nano zinc oxide as an alternative to pharmacological dose of zinc oxide on growth performance, diarrhea, immune responses, and intestinal microflora profile in weaned pigs. Anim. Feed Sci. Technol. 258:114312. 114312. doi:10.1016/j.anifeedsci.2019.114312.
  • Swapan KG. 2006. Functional coatings. 1st ed. John Wiley & Sons, Ltd. doi:10.1002/3527608478.
  • Swinkels JW, Kornegay ET, Zhou W, Lindemann MD, Webb KE, Verstegen MW. 1996. Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs. J Anim Sci. 74(10):2420–2430. doi:10.2527/1996.74102420x.
  • Szuba-Trznadel A, Rząsa A, Hikawczuk T, Fuchs B. 2021. Effect of zinc source and level on growth performance and zinc status of weaned pigs. Animals. 11(7):2030. doi:10.3390/ani11072030.
  • Tajik N, Frech M, Schulz O, Schälter F, Lucas S, Azizov V, Dürholz K, Steffen F, Omata Y, Rings A, et al. 2020. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 11(1):1995. doi:10.1038/s41467-020-15831-7.
  • Upadhaya SD, Kim YM, Lee KY, Kim IH. 2018. Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. Anim. Feed Sci. Technol. 240:1–10. doi:10.1016/j.anifeedsci.2018.03.012.
  • Vahjen W, Roméo A, Zentek J. 2016. Impact of zinc oxide on the immediate postweaning colonization of enterobacteria in pigs1. Anim. Sci. J. 94(suppl_3):359–363. doi:10.2527/jas.2015-9795.
  • Villagómez-Estrada S, Pérez JF, Darwich L, Vidal A, van Kuijk S, Melo-Durán D, Solà-Oriol D. 2020. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. Anim Sci J. 98(5):skaa117. doi:10.1093/jas/skaa117.
  • Wang C, Xie P, Liu LL, Dong XY, Lu JJ, Zou XT. 2012. Use of lower level of capsulated zinc oxide as an alternative to pharmacological dose of zinc oxide for weaned pigs. Asian J Anim Veter Adv. 7(12):1290–1300. doi:10.3923/ajava.2012.1290.1300.
  • Wang C, Zhang L, Ying Z, He J, Zhou L, Zhang L, Zhong X, Wang T. 2018. Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned pigs. Biol Trace Elem Res. 185(2):364–374. doi:10.1007/s12011-018-1266-5.
  • Wang W, Van Noten N, Degroote J, Romeo A, Vermeir P, Michiels J. 2019. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned pigs. Animal Physiology Nutrition. 103(1):231–241. doi:10.1111/jpn.12999.
  • Wapnir RA, Stiel L. 1986. Zinc intestinal absorption in rats: specificity of amino acids as ligands. J Nutr. 116(11):2171–2179. doi:10.1093/jn/116.11.2171.
  • Wedekind KJ, Hortin AE, Baker DH. 1992. Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. Anim. Sci. J. 70(1):178–187. doi:10.2527/1992.701178x.
  • Xia T, Lai W, Han M, Han M, Ma X, Zhang L. 2017. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned pigs. Oncotarget. 8(39):64878–64891. doi:10.18632/oncotarget.17612.
  • Yin J, Li X, Li D, Yue T, Fang Q, Ni J, Zhou X, Wu G. 2009. Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs. J Nutr Biochem. 20(10):783–790. doi:10.1016/j.jnutbio.2008.07.007.
  • Zhang B, Guo Y. 2007. Beneficial effects of tetrabasic zinc chloride for weanling pigs and the bioavailability of zinc in tetrabasic form relative to ZnO. Anim Feed Sci Technol. 135(1-2):75–85. doi:10.1016/j.anifeedsci.2006.06.006.
  • Zhang G, Xia T, Zhao J, Liu L, He P, Zhang S, Zhang L. 2019. Moderate tetrabasic zinc chloride supplementation improves growth performance and reduces diarrhea incidence in weaned pigs. Asian Australas J Anim Sci. 33(2):264–276. doi:10.5713/ajas.18.0914.