444
Views
0
CrossRef citations to date
0
Altmetric
Production Physiology and Biology

Stability of the antimicrobial activity of selected essential oils and nature identical compounds and their interaction with Tween 20 against reference bacterial strains of zootechnical interest

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 189-199 | Received 28 Aug 2023, Accepted 07 Jan 2024, Published online: 23 Jan 2024

References

  • Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. J Agric Food Chem. 49(9):4168–4170. doi: 10.1021/jf001494m.
  • Andrade-Ochoa S, Sánchez-Aldana D, Chacón-Vargas KF, Rivera-Chavira BE, Sánchez-Torres LE, Camacho AD, Nogueda-Torres B, Nevárez-Moorillón GV. 2018. Oviposition deterrent and larvicidal and pupaecidal activity of seven essential oils and their major components against Culex quinquefasciatus say (Diptera: culicidae): Synergism–antagonism effects. Insects. 9(1):25. doi: 10.3390/insects9010025.
  • Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils - A review. Food Chem Toxicol. 46(2):446–475. doi: 10.1016/j.fct.2007.09.106.
  • Bianchi F, Careri M, Mangia A, Musci M. 2007. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: database creation and evaluation of precision and robustness. J Sep Sci. 30:563–572.
  • Brun P, Bernabè G, Filippini R, Piovan A. 2019. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol. 76(1):108–116. doi: 10.1007/s00284-018-1594-x.
  • Chouhan S, Sharma K, Guleria S. 2017. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 4(3):58. doi: 10.3390/medicines4030058.
  • Clinical and Laboratory Standards Institute (CLSI). 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards. In. CLSI document (9th ed., p. M07–A9). Wayne, PA: CLSI.
  • EUCAST. 2000. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microbiol Infect. 6:503–508.
  • European Food Safety Authority. 2005. Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. Efsa J. 3:223.
  • Fratini F, Mancini S, Turchi B, Friscia E, Pistelli L, Giusti G, Cerri D. 2017. A novel interpretation of the Fractional Inhibitory Concentration Index: the case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol Res. 195:11–17. doi: 10.1016/j.micres.2016.11.005.
  • Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J, Demo M. 2009. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour & Fragrance J. 24(6):348–354. doi: 10.1002/ffj.1948.
  • García Beltrán JM, Esteban MÁ. 2022. Nature-identical compounds as feed additives in aquaculture. Fish Shellfish Immunol. 123:409–416. doi: 10.1016/j.fsi.2022.03.010.
  • Giovagnoni G, Tugnoli B, Piva A, Grilli E. 2019. Organic acids and nature identical compounds can increase the activity of conventional antibiotics against clostridium perfringens and enterococcus cecorum in vitro. J Appl Poult Res. 28(4):1398–1407. doi: 10.3382/japr/pfz101.
  • Guil-Guerrero JL, Ramos L, Moreno C, Zúñiga-Paredes JC, Carlosama-Yepez M, Ruales P. 2016. Antimicrobial activity of plant-food by-products: a review focusing on the tropics. Livest Sci. 189:32–49. doi: 10.1016/j.livsci.2016.04.021.
  • Hammer KA, Carson CF, Riley TV. 1999. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 86(6):985–990. doi: 10.1046/j.1365-2672.1999.00780.x.
  • Hazardous Substances Data Bank (HSDB). 2023. [accessed May 2023]. 1928 - PubChem. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/1928.
  • Janssen AM, Scheffer JJC, Svendsen AB, Scheffer C, Baerheim Svendsen A. 2007. Antimicrobial activity of essential oils: a 1976-1986 literature review. Aspects Test Methods. Planta Med. 53:395–398.
  • Low CX, Tan LTH, Mutalib NSA, Pusparajah P, Goh BH, Chan KG, Letchumanan V, Lee LH. 2021. Unveiling the impact of antibiotics and alternative methods for animal husbandry: a review. Antibiotics. 10(5):578. doi: 10.3390/antibiotics10050578.
  • Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, Izadi M, Abdollahi M, Nabavi SM, Ajami M. 2017. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 43(6):668–689. doi: 10.1080/1040841X.2017.1295225.
  • Meletiadis J, Pournaras S, Roilides E, Walsh TJ. 2010. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumi. Antimicrob Agents Chemother. 54(2):602–609. doi: 10.1128/AAC.00999-09.
  • Mongelli A, Rodolfi M, Ganino T, Marieschi M, Caligiani A, Dall’Asta C, Bruni R. 2016. Are Humulus lupulus L. ecotypes and cultivars suitable for the cultivation of aromatic hop in Italy? A phytochemical approach. Ind Crops Prod. 83:693–700. doi: 10.1016/j.indcrop.2015.12.046.
  • Odds FC. 2003. Editorial synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 52(1):1–1. doi: 10.1093/jac/dkg301.
  • Papatsiros VG, Katsoulos PD, Koutoulis KC, Karatzia M, Dedousi A, Christodoulopoulos G. 2013. Alternatives to antibiotics for farm animals. CAB Reviews: perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 8:1–15. doi: 10.1079/PAVSNNR20138032.
  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. 2020. An overview of micro- and nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nanomaterials. 10(1):135. doi: 10.3390/nano10010135.
  • Pereira WA, Pereira CDS, Assunção RG, Silva I d, Rego FS, Alves LSR, Santos JS, Nogueira FJR, Zagmignan A, Thomsen TT, et al. 2021. New insights into the antimicrobial action of cinnamaldehyde towards escherichia coli and its effects on intestinal colonization of mice. Biomolecules. 11(2):302. doi: 10.3390/biom11020302.
  • Pitino R, Marchi MD, Manuelian CL, Johnson M, Simoni M, Righi F, Tsiplakou E. 2021. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on yield, quality, and oxidative status of poultry products: a review of the literature of the last 20 years. Antioxidants. 10(5):757. doi: 10.3390/antiox10050757.
  • Regulation (EC) No. 1831/ 2003. The European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition.
  • Remmal A, Bouchikhi T, Rhayour K, Ettayebi M, Tantaoui-Elaraki A. 1993. Improved method for the determination of antimicrobial activity of essential oils in agar medium. J Essent Oil Res. 5(2):179–184. doi: 10.1080/10412905.1993.9698197.
  • Rocha RP, Melo E de C, Barbosa LCA, Santos R d, Cecon PR, Dallacort R, Santi A. 2014. Influence of plant age on the content and composition of essential oil of Cymbopogon citratus (DC.) Stapf. J Med Plants Res. 8:1121–1126.
  • Rossi B, Toschi A, Piva A, Grilli E. 2020. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr Res Rev. 33(2):218–234. doi: 10.1017/S0954422420000013.
  • Rúa J, Valle PD, Arriaga DD, Fernández-Álvarez L, García-Armesto MR. 2019. Combination of Carvacrol and Thymol: antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog Dis. 16(9):622–629. doi: 10.1089/fpd.2018.2594.
  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS. 2001. Regulation of essential oil production in plants. Plant Growth Regul. 34(1):3–21. doi: 10.1023/A:1013386921596.
  • Sarker SD, Nahar L, Kumarasamy Y. 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 42(4):321–324. doi: 10.1016/j.ymeth.2007.01.006.
  • Savoia D. 2012. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 7(8):979–990. doi: 10.2217/fmb.12.68.
  • Simoni M, Temmar R, Bignamini DA, Foskolos A, Sabbioni A, Ablondi M, Quarantelli A, Righi F. 2020. Effects of the combination between selected phytochemicals and the carriers silica and Tween 80 on dry matter and neutral detergent fibre digestibility of common feeds. Ital J Anim Sci. 19(1):723–738. doi: 10.1080/1828051X.2020.1787882.
  • Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. 1995. Antimicrobial activity of mint essential oils. J Agric Food Chem. 43(9):2384–2388. doi: 10.1021/jf00057a013.
  • Smith-Palmer A, Stewart J, Fyfe L. 1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol. 26(2):118–122. doi: 10.1046/j.1472-765x.1998.00303.x.
  • Spaggiari C, Righetti L, Spadini C, Annunziato G, Nsanzurwimo A, Cabassi CS, Bruni R, Costantino G. 2023. Metabolite profiling and bioactivities of leaves, stems, and flowers of Rumex usambarensis (Dammer) dammer, a traditional African medicinal plant. Plants. 12(3):482. doi: 10.3390/plants12030482.
  • Tardugno R, Spagnoletti A, Grandini A, Maresca I, Sacchetti G, Pellati F, Benvenuti S. 2018. Chemical profile and biological activities of Cedrelopsis grevei H. Baillon bark essential oil. Plant Biosyst. 152(1):120–129. doi: 10.1080/11263504.2016.1255271.
  • Tsiplakou E, Pitino R, Manuelian CL, Simoni M, Mitsiopoulou C, Marchi MD, Righi F. 2021. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins in livestock animal products yield, quality, and oxidative status: a review. Antioxidants. 10(5):780. doi: 10.3390/antiox10050780.
  • Turek C, Stintzing FC. 2013. Stability of essential oils: a review. Comp Rev Food Sci Food Safe. 12(1):40–53. doi: 10.1111/1541-4337.12006.
  • Verma RS, Rahman L, Verma RK, Chauhan A, Yadav AK, Singh A. 2010. Essential oil composition of menthol mint (Mentha arvensis L.) and peppermint (Mentha piperita L.) cultivars at different stages of plant growth from Kumaon region of Western Himal. J Med Arom Plants. 1:13–18.
  • Ye H, Shen S, Xu J, Lin S, Yuan Y, Jones GS. 2013. Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control. 34(2):619–623. doi: 10.1016/j.foodcont.2013.05.032.
  • Zyl RV, Seatlholo ST, Vuuren SV, Viljoen AM. 2006. The biological activities of 20 nature identical essential oil constituents. J Essent Oil Res. 18(sup1):129–133. doi: 10.1080/10412905.2006.12067134.