564
Views
0
CrossRef citations to date
0
Altmetric
Production Physiology and Biology

The effect of Campylobacter jejuni challenge on the ileal microbiota and short-chain fatty acids at 28 and 35 days of age

ORCID Icon, , , , , ORCID Icon & show all
Pages 299-312 | Received 20 Aug 2023, Accepted 17 Jan 2024, Published online: 25 Feb 2024

References

  • Abellan-Schneyder I, Siebert A, Hofmann K, Wenning M, Neuhaus K. 2021. Full-length SSU rRNA gene sequencing allows species-level detection of bacteria, archaea, and yeasts present in milk. Microorganisms. 9(6):1251. doi: 10.3390/microorganisms9061251.
  • Al Hakeem WG, Acevedo Villanueva KY, Selvaraj RK. 2023. The development of gut microbiota and its changes following C. Jejuni infection in broilers. Vaccines. 11(3):595. doi: 10.3390/vaccines11030595.
  • Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. 2022. Campylobacter jejuni in poultry: pathogenesis and control strategies. Microorganisms. 10(11):2134. doi: 10.3390/microorganisms10112134.
  • Awad WA, Dublecz F, Hess C, Dublecz K, Khayal B, Aschenbach JR, Hess M. 2016. Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut. Poult Sci. 95(10):2259–2265. doi: 10.3382/ps/pew151.
  • Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, Hess M. 2016. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection. Front Cell Infect Microbiol. 6:154. doi: 10.3389/fcimb.2016.00154.
  • Awad WA, Molnár A, Aschenbach JR, Ghareeb K, Khayal B, Hess C, Liebhart D, Dublecz K, Hess M. 2014. Campylobacter infection in chickens modulates the intestinal epithelial barrier function. Innate Immun. 21(2):151–160. doi: 10.1177/1753425914521648.
  • Berrang ME, Smith DP, Windham WR, Feldner PW. 2004. Effect of intestinal content contamination on broiler carcass Campylobacter counts. J Food Prot. 67(2):235–238. doi: 10.4315/0362-028x-67.2.235.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37:852–857. doi: 10.1038/s41587-019-0209-9.
  • Callahan BJ, Grinevich D, Thakur S, Balamotis MA, Yehezkel TB. 2021. Ultra-accurate microbial amplicon sequencing with synthetic long reads. Microbiome. 9(1):130. doi: 10.1186/s40168-021-01072-3.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. High-resolution sample inference from illumina amplicon data. Nat Methods 13:581–583. doi: 10.1038/nmeth.3869.
  • Cason EE, Al Hakeem WG, Adams D, Shanmugasundaram R, Selvaraj R. 2023. Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J Appl Poult Res. 32(2):100315. doi: 10.1016/j.japr.2022.100315.
  • Connerton PL, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, Smith DL, Fish NM, Connerton IF. 2018. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome. 6(1):88. doi: 10.1186/s40168-018-0477-5.
  • Cosby D. 2017. Colonization of day-old broiler chicks with Campylobacter coli through different inoculation routes. J Vet Med Res. 4(7):1096. ISSN: 0931-184X, 1439–0442.
  • Dhillon AS, Shivaprasad H, Schaberg D, Wier F, Weber S, Bandli D. 2006. Campylobacter jejuni infection in broiler chickens. Avian Dis. 50(1):55–58. doi: 10.1637/7411-071405R.1.
  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 38(6):685–688. eng. doi: 10.1038/s41587-020-0548-6.
  • Fan Y, Ju T, Bhardwaj T, Korver DR, Willing BP. 2023. Week-old chicks with high Bacteroides abundance have increased short-chain fatty acids and reduced markers of gut inflammation. Microbiol Spectr. 11(2):e03616-03622. doi: 10.1128/spectrum.03616-22.
  • Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. 2022. Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods. 11(10):1401. doi: 10.3390/foods11101401.
  • Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 5(1):3611. doi: 10.1038/ncomms4611.
  • Gerritzen MA, Lambooij B, Reimert H, Stegeman A, Spruijt B. 2004. On-farm euthanasia of broiler chickens: effects of different gas mixtures on behavior and brain activity. Poult Sci. 83(8):1294–1301. doi: 10.1093/ps/83.8.1294.
  • Gharib NK, Rahimi S, Khaki P. 2012. Comparison of the effects of probiotic, organic acid and medicinal plant on Campylobacter jejuni challenged broiler chickens. J. Agr. Sci. Tech. 14:1485–1496
  • Han Z, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. 2016. The influence of age on Campylobacter jejuni infection in chicken. Dev Comp Immunol. 62:58–71. doi: 10.1016/j.dci.2016.04.020.
  • Han Z, Willer T, Li L, Pielsticker C, Rychlik I, Velge P, Kaspers B, Rautenschlein S. 2017. Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect Immun. 85(11):e00380–e00317. doi: 10.1128/IAI.00380-17.
  • Indikova I, Humphrey TJ, Hilbert F. 2015. Survival with a helping hand: Campylobacter and microbiota [perspective]. Front Microbiol. 6:1266. doi: 10.3389/fmicb.2015.01266.
  • Jurburg SD, Brouwer MSM, Ceccarelli D, van der Goot J, Jansman AJM, Bossers A. 2019. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. Microbiologyopen. 8(9):e00821. doi: 10.1002/mbo3.821.
  • Kaakoush NO, Sodhi N, Chenu JW, Cox JM, Riordan SM, Mitchell HM. 2014. The interplay between Campylobacter and Helicobacter species and other gastrointestinal microbiota of commercial broiler chickens. Gut Pathog. 6(1):18. doi: 10.1186/1757-4749-6-18.
  • Khan I, Bai Y, Zha L, Ullah N, Ullah H, Shah SRH, Sun H, Zhang C. 2021. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection. Front Cell Infect Microbiol. 11:716299. doi: 10.3389/fcimb.2021.716299.
  • Lawley TD, Walker AW. 2013. Intestinal colonization resistance. Immunology. 138(1):1–11. doi: 10.1111/j.1365-2567.2012.03616.x.
  • Li X, Swaggerty CL, Kogut MH, Chiang H-I, Wang Y, Genovese KJ, He H, Zhou H. 2010. Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS One. 5(7):e11827. doi: 10.1371/journal.pone.0011827.
  • Liao X, Shao Y, Sun G, Yang Y, Zhang L, Guo Y, Luo X, Lu L. 2020. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult Sci. 99(11):5883–5895. doi: 10.1016/j.psj.2020.08.033.
  • Lin Y, Lourenco JM, Olukosi OA. 2023. Effects of xylanase, protease, and xylo-oligosaccharides on growth performance, nutrient utilization, short chain fatty acids, and microbiota in Eimeria-challenged broiler chickens fed high fiber diet. Anim Nutr. 15:430–442. doi: 10.1016/j.aninu.2023.08.009.
  • Liu L, Li Q, Yang Y, Guo A. 2021. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front Vet Sci. 8:736739. doi: 10.3389/fvets.2021.736739.
  • Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. 2021. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 165:105420. doi: 10.1016/j.phrs.2021.105420.
  • Lourenco JM, Kieran TJ, Seidel DS, Glenn TC, Silveira M, Callaway TR, Stewart RL Jr. 2020. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate. PLoS One. 15(4):e0231533. doi: 10.1371/journal.pone.0231533.
  • Mortada M, Cosby DE, Akerele G, Ramadan N, Oxford J, Shanmugasundaram R, Ng TT, Selvaraj RK. 2021. Characterizing the immune response of chickens to Campylobacter jejuni (Strain A74C). PLoS One. 16(3):e0247080. doi: 10.1371/journal.pone.0247080.
  • Mortada M, Cosby DE, Shanmugasundaram R, Selvaraj RK. 2020. In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J Appl Poult Res. 29(2):435–446. doi: 10.1016/j.japr.2020.02.001.
  • Munoz LR, Bailey MA, Krehling JT, Bourassa DV, Hauck R, Pacheco WJ, Chaves-Cordoba B, Chasteen KS, Talorico AA, Escobar C, et al. 2023. Effects of dietary yeast cell wall supplementation on growth performance, intestinal Campylobacter jejuni colonization, innate immune response, villus height, crypt depth, and slaughter characteristics of broiler chickens inoculated with Campylobacter jejuni at day 21. Poult Sci. 102(5):102609. doi: 10.1016/j.psj.2023.102609.
  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S, et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 403(6770):665–668. doi: 10.1038/35001088.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res. 12:2825–2830.
  • Potturi-Venkata L-P, Backert S, Lastovica A, Vieira S, Norton R, Miller R, Pierce S, Oyarzabal O. 2007. Evaluation of different plate media for direct cultivation of Campylobacter species from live broilers. Poult Sci. 86(7):1304–1311. doi: 10.1093/ps/86.7.1304.
  • Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 5(3):e9490. doi: 10.1371/journal.pone.0009490.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(Database issue):D590–D596. doi: 10.1093/nar/gks1219.
  • Richards-Rios P, Fothergill J, Bernardeau M, Wigley P. 2020. Development of the ileal microbiota in three broiler breeds. Front Vet Sci. 7:17. doi: 10.3389/fvets.2020.00017.
  • Rothrock MJ Jr, Hiett KL, Gamble J, Caudill AC, Cicconi-Hogan KM, Caporaso JG. 2014. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples. J Vis Exp. (94):e52161, 7. doi: 10.3791/52161.
  • Shang Y, Kumar S, Oakley B, Kim WK. 2018. Chicken gut microbiota: importance and detection technology. Front Vet Sci. 5:254. doi: 10.3389/fvets.2018.00254.
  • Silva YP, Bernardi A, Frozza RL. 2020. The role of short-chain fatty acids from gut microbiota in gut-brain communication [review]. Front Endocrinol. 11:25. doi: 10.3389/fendo.2020.00025.
  • Sofka D, Pfeifer A, Gleiss B, Paulsen P, Hilbert F. 2015. Changes within the intestinal flora of broilers by colonisation with Campylobacter jejuni. Berl Munch Tierarztl Wochenschr. 128(3-4):104–110.
  • Stahl M, Butcher J, Stintzi A. 2012. Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol. 2:5.
  • Thibodeau A, Fravalo P, Yergeau É, Arsenault J, Lahaye L, Letellier A. 2015. Chicken caecal microbiome modifications induced by Campylobacter jejuni colonization and by a non-antibiotic feed additive. PLoS One. 10(7):e0131978. doi: 10.1371/journal.pone.0131978.
  • Thomas MT, Shepherd M, Poole RK, van Vliet AH, Kelly DJ, Pearson BM. 2011. Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on L‐lactate. Environ Microbiol. 13(1):48–61. doi: 10.1111/j.1462-2920.2010.02307.x.
  • Van Deun K, Haesebrouck F, Van Immerseel F, Ducatelle R, Pasmans F. 2008. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 37(4):379–383. doi: 10.1080/03079450802216603.
  • von Buchholz JS, Ruhnau D, Hess C, Aschenbach JR, Hess M, Awad WA. 2022. Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog. 168:105509. doi: 10.1016/j.micpath.2022.105509.
  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991.
  • Wright JA, Grant AJ, Hurd D, Harrison M, Guccione EJ, Kelly DJ, Maskell DJ. 2009. Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology. 155(Pt 1):80–94. doi: 10.1099/mic.0.021790-0.
  • Yang M, Shi L, Ge Y, Leng D, Zeng B, Wang T, Jie H, Li D. 2022. Dynamic changes in the gut microbial community and function during broiler growth. Microbiol Spectr. 10(4):e01005–e01022. doi: 10.1128/spectrum.01005-22.
  • Youssef NH, Farag IF, Rudy S, Mulliner A, Walker K, Caldwell F, Miller M, Hoff W, Elshahed M. 2019. The Wood–Ljungdahl pathway as a key component of metabolic versatility in candidate phylum Bipolaricaulota (Acetothermia, OP1). Environ Microbiol Rep. 11(4):538–547. doi: 10.1111/1758-2229.12753.