636
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Black soldier fly life history traits can be influenced by isonutrient-waste-based diets

, ORCID Icon, & ORCID Icon
Pages 331-341 | Received 14 Nov 2023, Accepted 05 Feb 2024, Published online: 15 Feb 2024

References

  • Addeo NF, Vozzo S, Secci G, Mastellone V, Piccolo G, Lombardi P, Parisi G, Khalid AA, Youssef AA, Bovera F. 2021. Different combinations of butchery and vegetable wastes on growth performance, chemical-nutritional characteristics and oxidative status of black soldier fly growing larvae. Animals (Basel). 11(12):3515. doi: 10.3390/ani11123515.
  • AOAC International. 2000. Official methods of analysis of AOAC International. 17th ed. Gaithersburg: Association of Official Analytical Chemists.
  • AOAC International. 2003. Official methods of analysis of AOAC International. 17th ed.; 2nd revision. Gaithersburg: Association of Official Analytical Chemists.
  • Barragan-Fonseca KB, Gort G, Dicke M, van Loon JJA. 2020. Nutritional plasticity of the black soldier fly (Hermetia illucens) in response to artificial diets varying in protein and carbohydrate concentrations. J Insects Food Feed. (7):5–6. doi: 10.3920/JIFF2020.0034.
  • Beesigamukama D, Mochoge B, Korir NK, K M Fiaboe K, Nakimbugwe D, Khamis FM, Subramanian S, Wangu MM, Dubois T, Ekesi S, et al. 2020. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Manag. 119:183–194. (): doi: 10.1016/j.wasman.2020.09.043.
  • Bellezza Oddon S, Biasato I, Gasco L. 2022a. Isoenergetic-practical and semi-purified diets for protein requirement determination in Hermetia illucens larvae: consequences on life history traits. J Anim Sci Biotechnol. 13(1):17. doi: 10.1186/s40104-021-00659-y.
  • Bellezza Oddon S, Biasato I, Resconi A, Gasco L. 2022b. Determination of lipid requirements in black soldier fly through semi-purified diets. Sci Rep. 12(1):10922. doi: 10.1038/s41598-022-14290-y.
  • Black IVWB, Krafsur ES. 1987. Fecundity and size in the housefly: investigations of some environmental sources and genetic correlates of variation. Med Vet Entomol. 1(4):369–382.): doi: 10.1111/j.1365-2915.1987.tb00368.x.
  • Bosch G, Oonincx DGAB, Jordan HR, Zhang J, van Loon JJA, van Huis A, Tomberlin JK. 2020. Standardisation of quantitative resource conversion studies with black soldier fly larvae. JIFF. 6(2):95–109.): doi: 10.3920/JIFF2019.0004.
  • Chia SY, Tanga CM, Osuga IM, Mohamed SA, Khamis FM, Salifu D, Sevgan S, Fiaboe KKM, Niassy A, van Loon JJA, et al. 2018. Effects of waste stream combinations from brewing industry on performance of black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). PeerJ. 6:e5885. () doi: 10.7717/peerj.5885.
  • Cohn Z, Latty T, Abbas A. 2022. Understanding dietary carbohydrates in black soldier fly larvae treatment of organic waste in the circular economy. Waste Manag. (137)::9–19. doi: 10.1016/j.wasman.2021.10.013.
  • de Sousa RT, Darnell R, Wright GA. 2022. Behavioural regulation of mineral salt intake in honeybees: a self-selection approach. Philos Trans R Soc Lond B Biol Sci. 377(1853):20210169.): doi: 10.1098/rstb.2021.0169.
  • Diener S, Zurbrügg C, Tockner K. 2009. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res. 27(6):603–610.): doi: 10.1177/0734242X09103838.
  • Espinoza-Fuentes FP, Terra WR. 1987. Physiological adaptations for digesting bacteria. Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochem. 17(6):809–817.): doi: 10.1016/0020-1790(87)90015-1.
  • Fischer H, Romano N. 2021. Fruit, vegetable, and starch mixtures on the nutritional quality of black soldier fly (Hermetia illucens) larvae and resulting frass. J Insects Food Feed. (7):319–327. doi: 10.3390/insects12040332.
  • Flores M, Longnecker M, Tomberlin JK. 2014. Effects of temperature and tissue type on Chrysomya rufifacies (Diptera: Calliphoridae) (Macquart) development. Forensic Sci Int. (245)::24–29. doi: 10.1016/j.forsciint.2014.09.023.
  • Georgescu B, Struți D, Păpuc T, Cighi V, Boaru A. 2021. Effect of the energy content of diets on the development and quality of the fat reserves of larvae and reproduction of adults of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Eur J Entomol. (118)::297–306. doi: 10.14411/eje.2021.030.
  • Gobbi P, Martínez-Sánchez A, Rojo S. 2013. The effects of larval diet on adult life-history traits of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Eur J Entomol. 110(3):461–468.). doi: 10.14411/eje.2013.061.
  • Gold M, Cassar CM, Zurbrügg C, Kreuzer M, Boulos S, Diener S, Mathys A. 2020. Biowaste treatment with black soldier fly larvae: increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. (102):319–329. doi: 10.1016/j.wasman.2019.10.036.
  • Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. 2018. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Manag. (82):302–318. doi: 10.1016/j.wasman.2018.10.022.
  • Hogsette JA. 1992. New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. J Econ Entomol. 85(6):2291–2294. doi: 10.1093/jee/85.6.2291.
  • Hopkins I, Newman LP, Gill H, Danaher J. 2021. The influence of food waste rearing substrates on black soldier fly larvae protein composition: a systematic review. Insects. 12(7):608.). doi: 10.3390/insects12070608.
  • Hövemeyer K. 2012. The Symbiotic Habit. Princeton: Princeton University Press.
  • Ingrao C, Faccilongo N, Di Gioia L, Messineo A. 2018. Food waste recovery into energy in a circular economy perspective: a comprehensive review of aspects related to plant operation and environmental assessment. J. Clean. Prod. (184)::869–892. doi: 10.1016/j.jclepro.2018.02.267.
  • Kim CH, Ryu J, Lee J, Ko K, Lee JY, Park KY, Chung H. 2021. Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: a review. Processes. 9(1):161. doi: 10.3390/pr9010161.
  • Kraus S, Monchanin C, Gomez-Moracho T, Lihoreau M. 2019. Insect diet. In Encyclopedia of animal cognition and behavior. Swiss: Springer International Publishing.
  • Lee Y, Poudel S, Kim Y, Thakur D, Montell C. 2018. Calcium taste avoidance in Drosophila. Neuron. 97(1):67–74.e4.): doi: 10.1016/j.neuron.2017.11.038.
  • Lihoreau M, Buhl J, Charleston MA, Sword GA, Raubenheimer D, Simpson SJ. 2015. Nutritional ecology beyond the individual: a conceptual framework for integrating nutrition and social interactions. Ecol Lett. 18(3):273–286. doi: 10.1111/ele.12406.
  • Liu X, Chen X, Wang H, Yang Q, Ur Rehman K, Li W, Minmin C, Li Q, Mazza L, Zhang J, et al. 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLOS One. 12(8):e0182601. doi: 10.1371/journal.pone.0182601.
  • Liu C, Wang C, Yao H, Chapman SJ. 2021. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. Sci Total Environ. (762):144118. doi: 10.1016/j.scitotenv.2020.144118.
  • Ma J, Lei Y, Ur Rehman K, Yu Z, Zhang J, Li W, Li Q, Tomberlin JK, Zheng L. 2018. Dynamic Effects of initial pH of substrate on biological growth and metamorphosis of black soldier fly (Diptera: Stratiomyidae). Environ Entomol. 47(1):159–165.): doi: 10.1093/ee/nvx186.
  • Manurung R, Supriatna A, Esyanthi RR, Putra RE. 2016. Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J Entomol. Zool. Stud. 4(4):1036–1041.
  • Meneguz M, Gasco L, Tomberlin JK. 2018. Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development. PLoS One. 13(8):e0202591.). doi: 10.1371/journal.pone.0202591.
  • Mertens DR. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative Study. J AOAC Int. 85(6):1217–1240.): doi: 10.1093/jaoac/85.6.1217.
  • Oonincx DGAB, Finke MD. 2021. Nutritional value of insects and ways to manipulate their composition. JIFF. 7(5):639–659. doi: 10.3920/JIFF2020.0050.
  • Purkayastha D, Sarkar S. 2021. Sustainable waste management using black soldier fly larva: a review. International J. Environ. Sci. Technol. (1). 19:12701–26. doi: 10.1007/s13762-021-03524-7.
  • Siddiqui SA, Ristow B, Rahayu T, Putra NS, Widya Yuwono N, Nisa’ K, Mategeko B, Smetana S, Saki M, Nawaz A, et al. 2022. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 140:1–13. (): doi: 10.1016/j.wasman.2021.12.044.
  • Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, Khanal SK. 2020. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera: Stratiomyidae)(BSF). Waste Manag. (117);:58–80. doi: 10.1016/j.wasman.2020.07.050.
  • Troch T, Lefébure É, Baeten V, Colinet F, Gengler N, Sindic M. 2017. Cow milk coagulation: process description, variation factors and evaluation methodologies. A review. Biotechnol Agron Soc Environ. 21:276–287. doi: 10.25518/1780-4507.13692.
  • Tschirner M, Simon A. 2015. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. JIFF. 1(4):249–259. doi: 10.3920/JIFF2014.0008.
  • Yuan MC, Hasan HA. 2022. Effect of feeding rate on growth performance and waste reduction efficiency of black soldier fly larvae (Diptera: Stratiomyidae). Trop Life Sci Res. 33(1):179–199. doi: 10.21315/tlsr2022.33.1.11.
  • Zhang YV, Ni J, Montell C. 2013. The molecular basis for attractive salt-taste coding in drosophila. Science. 340(6138):1334–1338. doi: 10.1126/science.1234133.