335
Views
0
CrossRef citations to date
0
Altmetric
Ruminants Nutrition and Feeding

Improve nutritive value of silage based on prickly pear peel by-products

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 492-503 | Received 05 Oct 2023, Accepted 21 Feb 2024, Published online: 18 Mar 2024

References

  • Abidi S, Ben Salem H, Nefzaoui A, Vasta V, Priolo A. 2013. Silage composed of Opuntia ficus-indica f. inermis cladodes, olive cake and wheat bran as alternative feed for Barbarine lamb. Acta Hortic. 995(995):297–301. doi: 10.17660/ActaHortic.2013.995.36.
  • Ali MF, Tahir M. 2021. An overview on the factors affecting water-soluble carbohydrates concentration during ensiling of silage. J Plant Environ. 3(1):63–80. doi: 10.33687/jpe.003.01.3702.
  • Amanzougarene Z, Fondevila M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals. 10(10):1935. doi: 10.3390/ani10101935.
  • Amaya-Cruz DM, Pérez-Ramírez IF, Delgado-García J, Mondragón-Jacobo C, Dector-Espinoza A, Reynoso-Camacho R. 2019. An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chem. 278:568–578. doi: 10.1016/j.foodchem.2018.11.031.
  • Arieli A, Sklan D, Kissil G. 1993. A note on the nutritive value of Ulva lactuca for ruminants. Anim Sci. 57(2):329–331. doi: 10.1017/S0003356100006978.
  • Bauer E, Williams BA, Voigt C, Mosenthin R, Verstegen MWA. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim Sci. 73(2):313–322. doi: 10.1017/S135772980005829X.
  • Branciari R, Galarini R, Trabalza-Marinucci M, Miraglia D, Roila R, Acuti G, Giusepponi D, Dal Bosco A, Ranucci D. 2021. Effects of olive mill vegetation water phenol metabolites transferred to muscle through animal diet on rabbit meat microbial quality. Sustainability. 13(8):4522. doi: 10.3390/su13084522.
  • Bronts S, Gerbens-Leenes PW, Guzmán-Luna P. 2023. The water, land and carbon footprint of conventional and organic dairy systems in the Netherlands and Spain. A case study into the consequences of ecological indicator selection and methodological choices. Energy Nexus. 11:100217. doi: 10.1016/j.nexus.2023.100217.
  • Buffa G, Mangia NP, Cesarani A, Licastro D, Sorbolini S, Pulina G, Nudda A. 2020. Agroindustrial by-products from tomato, grape and myrtle given at low dosage to lactating dairy ewes: effects on rumen parameters and microbiota. Ital J Anim Sci. 19(1):1462–1471. doi: 10.1080/1828051X.2020.1848465.
  • Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A. 2019. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital J Anim Sci. 18(1):336–341. doi: 10.1080/1828051X.2018.1529544.
  • Collins M, Moore KJ, Nelson CJ, Barnes RF. 2017. Preservation of forage as hay and silage. Forages. 1:321.
  • Correddu F, Lunesu MF, Buffa G, Atzori AS, Nudda A, Battacone G, Pulina G. 2020. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals. 10(1):131. doi: 10.3390/ani10010131.
  • Dai T, Wang J, Dong D, Yin X, Zong C, Jia Y, Shao T. 2022. Effects of brewers’ spent grains on fermentation quality, chemical composition and in vitro digestibility of mixed silage prepared with corn stalk, dried apple pomace and sweet potato vine. Ital J Anim Sci. 21(1):198–207. doi: 10.1080/1828051X.2021.2022994.
  • Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. 2013. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 69(1):114–126. doi: 10.1016/j.phrs.2013.01.003.
  • Dehority BA. 2003. Numbers, factors affecting the population and distribution of rumen bacteria. In: Dehority BA, editors. Rumen microbiology; p. 265–294.
  • Flachowsky G, Meyer U, Südekum KH. 2017. Land use for edible protein of animal origin—A review. Animals. 7(12):25. doi: 10.3390/ani7030025.
  • Grizotto RK, Siqueira GR, Campos AF, Modesto RT, Resende FDD. 2020. Fermentative parameters and aerobic stability of orange peel silage with pelleted citrus pulp. Rev Brasil Zootec. 49:1–12.
  • Groot JCJ, Cone JW, Williams BA, Debersaques FMA, Lantinga EA. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feedstuff. Animal Feed Sci Tech. 64(1):77–89. doi: 10.1016/S0377-8401(96)01012-7.
  • Helkar PB, Sahoo AK, Patil NJ. 2016. Review: food industry by-products used as a functional food ingredients. Int J Waste Res. 6:1–6.
  • INRA. 2018. INRA feeding system for ruminants. Wageningen, the Netherlands: Wageningen Academic Publishers.
  • ISTAT. 2022. Istituto nazionale di statistica. [accessed on 13 July 2023]. http://dati.istat.it/Index.aspx?QueryId=33705#.
  • Johnson HE, Merry RJ, Davies DR, Kell DB, Theodorou MK, Griffith GW. 2005. Vacuum packing: a model system for laboratory-scale silage fermentations. J Appl Microbiol. 98(1):106–113. doi: 10.1111/j.1365-2672.2004.02444.x.
  • Kilic A. 1986. Silo feed (instruction, education and application proposals). Izmir, Turkey: Bilgehan Pres.
  • Kordi M, Naserian AA. 2012. Influence of wheat bran as a silage additive on chemical composition, in situ degradability and in vitro gas production of citrus pulp silage. African J Biotechn. 11(63):12669–12674.
  • Leip A, Billen G, Garnier J, Grizzetti B, Lassaletta L, Reis S, Simpson D, Sutton MA, de Vries W, Weiss F, et al. 2015. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ Res Lett. 10(11):115004. doi: 10.1088/1748-9326/10/11/115004.
  • Luciano A, Tretola M, Ottoboni M, Baldi A, Cattaneo D, Pinotti L. 2020. Potentials and challenges of former food products (food leftover) as alternative feed ingredients. Animals. 10(1):125. doi: 10.3390/ani10010125.
  • Ma B, Zhang C, Raza SHA, Yang B, Aloufi BH, Alshammari AM, AlGabbani Q, Khan R, Hou S, Gui L. 2022. Effects of dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio change on rumen bacterial community and ruminal fermentation parameters in Chinese black Tibetan sheep (Ovis aries). Small Rum Res. 216:106793. doi: 10.1016/j.smallrumres.2022.106793.
  • Makkar HP, Ankers P. 2014. Towards sustainable animal diets: a survey-based study. Animal Feed Sci Techn. 198:309–322. doi: 10.1016/j.anifeedsci.2014.09.018.
  • Manju Wadhwa MW, Bakshi MP, Makkar HP. 2015. Waste to worth: fruit wastes and by-products as animal feed. CABI Rev. 10:1–26. doi: 10.1079/PAVSNNR201510031.
  • Manzur-Valdespino S, Arias-Rico J, Ramírez-Moreno E, Sánchez-Mata MDC, Jaramillo-Morales OA, Angel-García J, Zafra-Rojas QY, Barrera Gálvez R, Cruz-Cansino NDS. 2022. Applications and pharmacological properties of cactus pear (Opuntia spp.) peel: a review. Life. 12(11):1903. doi: 10.3390/life12111903.
  • Martillotti F, Puppo P. Liquid chromatographic determination of organic acids in silages and rumen fluids. Ann Ist Super Zootec 1985; 18:1–10.
  • Martillotti F, Antongiovanni M, Rizzi L, Santi E, Bittante G. 1987. – Metodi di analisi per la valutazione degli alimenti di impiego zootecnico. Rome, Italy: Ed Ipra.
  • Martin PCB, Schlienz M, Greger M. 2017. Production of bio-hydrogen and methane during semi-continuous digestion of maize silage in a two-stage system. Int J Hydrogen Energy. 42(9):5768–5779. doi: 10.1016/j.ijhydene.2017.01.020.
  • Matias AGS, Araujo GGL, Campos FS, Moraes SA, Gois GC, Silva TS, Emerenciano Neto JV, Voltolini TV. 2020. Fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba for goat feeding. J Agric Sci. 158(4):304–312. doi: 10.1017/S0021859620000581.
  • Melgar B, Dias MI, Ciric A, Sokovic M, Garcia-Castello EM, Rodriguez-Lopez AD, Barros L, Ferreira I. 2017. By-product recovery of Opuntia spp. peels: betalainic and phenolic profiles and bioactive properties. Industr Crops Prod. 107:353–359. doi: 10.1016/j.indcrop.2017.06.011.
  • Morshedy SA, Abdal Mohsen AE, Basyony MM, Almeer R, Abdel-Daim MM, El-Gindy YM. 2020. Effect of prickly pear cactus peel supplementation on milk production, nutrient digestibility and rumen fermentation of sheep and the maternal effects on growth and physiological performance of suckling offspring. Animals. 10(9):1476. doi: 10.3390/ani10091476.
  • Mousa SA, Malik PK, Kolte AP, Bhatta R, Kasuga S, Uyeno Y. 2019. Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use. Asian-Australas J Anim Sci. 32(1):103–109. doi: 10.5713/ajas.18.0282.
  • Osuna-Martinez U, Reyes-Esparza J, Rodríguez-Fragoso L. 2014. Cactus (Opuntia ficus indica): a review on its antioxidants properties and potential pharmacological use in chronic diseases. Nat Prod Chem Res. 2:153.
  • Salami SA, Luciano G, O'Grady MN, Biondi L, Newbold CJ, Kerry JP, Priolo A. 2019. Sustainability of feeding plant by-products: a review of the implications for ruminant meat production. Anim Feed Sci Techn. 251:37–55. doi: 10.1016/j.anifeedsci.2019.02.006.
  • SAS. 2010. ‘SAS/STAT qualification tools user’s guide (version 9.2); statistical analysis system. Cary (NC): Institute Inc.
  • Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Techn. 48(3–4):185–197. doi: 10.1016/0377-8401(94)90171-6.
  • Todaro M, Alabiso M, Di Grigoli A, Scatassa ML, Cardamone C, Mancuso I, Mazza F, Bonanno A. 2020. Prickly pear by-product in the feeding of livestock ruminants: preliminary investigation. Animals. 10(6):949. doi: 10.3390/ani10060949.
  • Ülger İ, Beyzi SB, Kaliber M, Konca Y. 2020. Chemical, nutritive, fermentation profile and gas production of citrus pulp silages, alone or combined with maize silage. SA J An Sci. 50(1):161–169. doi: 10.4314/sajas.v50i1.17.
  • Underwood EJ, Suttle NF. 1999. The mineral nutrition of livestock 3rd ed. Oxon: CABI Publishing.
  • Vanbelle M. 1985. L'ensilage, aspects biologiques nouveaux. Laboratoire de Biochimie de la Nutrition. Faculte des sciences agronomiques. Ottignies-Louvain-la-Neuve, Belgium: Université Catholique de Louvain.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fibre, neutral detergent fibre, and no starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74(10):3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2.
  • Vastolo A, Calabrò S, Carotenuto D, Cutrignelli MI, Kiatti D, Tafuri S, Ciani F. 2023. Maca (Lepidium meyenii): in vitro evaluation of rumen fermentation and oxidative stress. Fermentation. 9(6):568. doi: 10.3390/fermentation9060568.
  • Vastolo A, Calabrò S, Cutrignelli MI. 2022a. A review on the use of agro-industrial CO-products in animals’ diets. Ital J Anim Sci. 21(1):577–594. doi: 10.1080/1828051X.2022.2039562.
  • Vastolo A, Calabrò S, Cutrignelli MI, Raso G, Todaro M. 2020. Silage of prickly pears (Opuntia spp.) juice by-products. Animals. 10(9):1716. doi: 10.3390/ani10091716.
  • Vastolo A, Matera R, Serrapica F, Cutrignelli MI, Neglia G, Kiatti DD, Calabrò S. 2022b. Improvement of rumen fermentation efficiency using different energy sources: in vitro comparison between buffalo and cow. Fermentation. 8(8):351. doi: 10.3390/fermentation8080351.
  • Weinberg ZG, Szakacs G, Ashbell G, Hen Y. 2001. The effect of temperature on the ensiling process of corn and wheat. J Appl Microbiol. 90(4):561–566. doi: 10.1046/j.1365-2672.2001.01276.x.
  • Wongtangtintharn S, Oku H, Iwasaki H, Toda T. 2004. Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells. J Nutr Sci Vitaminol (Tokyo). 50(2):137–143. doi: 10.3177/jnsv.50.137.
  • Zhang Q, Zhao M, Wang X, Yu Z, Na R. 2017. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl Sci. 63(4):211–217. doi: 10.1111/grs.12168.