170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

River-sourced Cladophora glomerata macroalgal biomass as a more sustainable and functional feed raw material for growing rabbits

, , , &
Pages 607-617 | Received 12 Feb 2024, Accepted 08 Apr 2024, Published online: 22 Apr 2024

References

  • Abid A, Abid R. 2006. Cladophora glomerata (L.) Kutzing as feed supplement to broiler chicks. Int J Biol Biotech. 3(2):423–427.
  • Al-Sagheer AA, Alagawany M, Bassiony SS, Shehata AM, El-Metwally AE, El-Kholy MS. 2023. Inactivated Saccharomyces cerevisiae and selenium as alternatives to antibiotic in rabbits reared under summer conditions: effects on growth, nutrient utilization, cecal fermentation, blood components, and intestinal architecture. Anim Feed Sci Technol. 302:115688. doi: 10.1016/j.anifeedsci.2023.115688.
  • Al-Soufi S, García J, Muíños A, López-Alonso M. 2022. Marine macroalgae in rabbit nutrition—a valuable feed in sustainable farming. Animals (Basel). 12(18):2346. doi: 10.3390/ani12182346.
  • Anh N, Hai T, Hien T. 2018. Effects of partial replacement of fishmeal protein with green seaweed (Cladophora spp.) protein in practical diets for the black tiger shrimp (Penaeus monodon) postlarvae. J Appl Phycol. 30(4):2649–2658. doi: 10.1007/s10811-018-1457-7.
  • Arrington LR, Cheeke PR, Lebas F, Lebas S. 1977. Nutrient Requirements of Rabbits (Anonymous Trans.) (Second revised edition ed.). Washington DC: National Reasearch Council (NRC).
  • Banerjee A, Meena RS, Jhariya MK, Yadav DK. 2020. Natural resources intensification and footprints management for sustainable food system. In Anonymous Agroecological Footprints Management for Sustainable Food System. (Anonymous Trans), p. 25–68. Singapore: Springer.
  • Batra G. 2023. Renewable energy economics: achieving Harmony between Environmental Protection and Economic Goals. SSC. 2(1):32. doi: 10.56106/ssc.2023.009.
  • Beaulieu L, Bondu S, Doiron K, Rioux L, Turgeon SL. 2015. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods. 17:685–697. doi: 10.1016/j.jff.2015.06.026.
  • Blasco A, Ouhayoun J. 2010. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci. 4(2):93–99.
  • Bruneel C, Lemahieu C, Fraeye I, Ryckebosch E, Muylaert K, Buyse J, Foubert I. 2013. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J Funct Foods. 5(2):897–904. doi: 10.1016/j.jff.2013.01.039.
  • Campos H. 2021. Productivity in agriculture for a sustainable future. Innov Revol Agri. 1st ed. Cham: Springer International Publishing); p. 33–69. doi: 10.1007/978-3-030-50991-0_2#DOI.
  • Candebat CL, Eddie T, Marc AF, Fernando F, Nankervis L. 2023. Exploring the physiological plasticity of giant grouper (Epinephelus lanceolatus) to dietary sulfur amino acids and taurine to measure dietary requirements and essentiality. Fish Physiol Biochem. 49(5):829–851. doi: 10.1007/s10695-023-01222-4.
  • Charlier J, Barkema HW, Becher P, De Benedictis P, Hansson I, Hennig-Pauka I, La Ragione R, Larsen LE, Madoroba E, Maes D, et al. 2022. Disease control tools to secure animal and public health in a densely populated world. Lancet. Planetary Health. 6(10):e812–e824. doi: 10.1016/S2542-5196(22)00147-4.
  • Davies RR, Rees Davies JAE. 2003. Rabbit gastrointestinal physiology. Vet Clin North Am Exot Anim Pract. 6(1):139–153. doi: 10.1016/S1094-9194(02)00024-5.
  • der Poel A v, Abdollahi MR, Cheng H, Colovic R, den Hartog LA, Miladinovic D, Page G, Sijssens K, Smillie JF, Thomas M, et al. 2020. Future directions of animal feed technology research to meet the challenges of a changing world. Anim Feed Sci Technol. 270:114692. doi: 10.1016/j.anifeedsci.2020.114692.
  • Exequiel S, Soledad P, Mariana R, Silvia B. 2021. Global feed conversion in semi-intensive rabbit production system of Argentina. Trop Anim Health Prod. 53(2):327. doi: 10.1007/s11250-021-02766-4.
  • Fernandes JN, Hemsworth PH, Coleman GJ, Tilbrook AJ. 2021. Costs and benefits of improving farm animal welfare. Agriculture (Basel). 11(2):104. doi: 10.3390/agriculture11020104.
  • Garcia-Vaquero M, Hayes M. 2016. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev Int. 32(1):15–45. doi: 10.1080/87559129.2015.1041184.
  • Harnedy PA, FitzGerald RJ. 2011. Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol. 47(2):218–232. doi: 10.1111/j.1529-8817.2011.00969.x.
  • He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, Zhao Y, Bai L, Hao X, Li X, et al. 2020. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. IJMS. 21(17):6356. doi: 10.3390/ijms21176356.
  • Heiba H, Al-Easa H, Rizk A. 1997. Fatty acid composition of twelve algae from the coastal zones of Qatar. Plant Foods Hum Nutr. 51(1):27–34. doi: 10.1023/A:1007980227542.
  • Koletzko B, Aggett PJ, Bindels JG, Bung P, Ferré P, Gil A, Lentze MJ, Roberfroid M, Strobel S. 1998. Growth, development and differentiation: a functional food science approach. Br J Nutr. 80 Suppl 1(S1):S5–S45. doi: 10.1079/BJN19980104.
  • Konkol D, Górniak W, Świniarska M, Korczyński M. 2018. Algae biomass in animal production. In Anonymous Algae Biomass: Characteristics and Applications. (Anonymous Trans.), p. 123–130. Cham: Springer International.
  • Kulshreshtha G, Hincke MT, Prithiviraj B, Critchley A. 2020. A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. JMSE. 8(7):536. doi: 10.3390/jmse8070536.
  • Kumar Y, Soni A, Sahoo A. 2022. Dietary intervention and feeding regime for enhanced production in sheep and rabbit. Processing and Quality Evaluation of Postharvest products of Sheep and Rabbits [E-book], p. 24. Hyderabad: CSWRI.
  • Lemosquet S, Delamaire E, Lapierre H, Blum JW, Peyraud JL. 2004. Glucose metabolism in lactating cows in response to isoenergetic infusions of propionic acid or duodenal glucose. J Dairy Sci. 92(7):3244–3257. doi: 10.3168/jds.S0022-0302(04)73332-9.
  • Mayerfeld D. 2023. The Limits of Efficiency. In D. Mayerfeld (Ed.) Our Carbon Hoofprint. Food and Health (Anonymous Trans), p. 105–127. Cham: Springer.
  • Messyasz B, Leska B, Fabrowska J, Pikosz M, Roj E, Cieslak A, Schroeder G. 2015. Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chemistry. 13(1):1108–1118. doi: 10.1515/chem-2015-0124.
  • Michalak I, Chojnacka K. 2015. Algae as production systems of bioactive compounds. Eng Life Sci. 15(2):160–176. doi: 10.1002/elsc.201400191.
  • Modina SC, Aidos L, Rossi R, Pocar P, Corino C, Di Giancamillo A. 2021. Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals (Basel). 11(5):1412. doi: 10.3390/ani11051412.
  • Mukaila R. 2023. Measuring the economic performance of small-scale rabbit production agribusiness enterprises. World Rabbit Sci. 31(1):35–46. doi: 10.4995/wrs.2023.18660.
  • Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Jonuškienė I, Karosienė J, Koreivienė J, Vilienė V. 2022a. Evaluation of phenolic compounds and pigments in freshwater Cladophora glomerata biomass from various lithuanian rivers as a potential future raw material for biotechnology. Water (Basel). 14(7):1138. doi: 10.3390/w14071138.
  • Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Vilienė V. 2023. Enhancement of rabbit meat functionality by replacing traditional feed raw materials with alternative and more sustainable freshwater Cladophora glomerata macroalgal biomass in their diets. Foods. 12(4):744. doi: 10.3390/foods12040744.
  • Nutautaitė M, Racevičiūtė-Stupelienė A, Pockevičius A, Vilienė V. 2023. Sensory evaluation of rabbit meat from individuals fed functional and more sustainable diets enriched with freshwater Cladophora glomerata macroalgal biomass. Animals (Basel). 13(13):2179. doi: 10.3390/ani13132179.
  • Nutautaitė M, Vilienė V, Racevičiūtė-Stupelienė A, Bliznikas S, Karosienė J, Koreivienė J. 2021. Freshwater Cladophora glomerata biomass as promising protein and other essential nutrients source for high quality and more sustainable feed production. Agriculture (Basel). 11(7):582. doi: 10.3390/agriculture11070582.
  • Nutautaitė M, Vilienė V, Racevičiūtė-Stupelienė A, Bliznikas S, Karosienė J, Koreivienė J. 2022, April 26. Cladophora glomerata as a potential nutrient source in animal nutrition Paper presented at the meeting of 1st International PhD Student’s Conference at the University of Life Sciences in Lublin, Poland: ENVIRONMENT – PLANT – ANIMAL – PRODUCT.
  • O' Brien R, Hayes M, Sheldrake G, Tiwari B, Walsh P. 2022. Macroalgal proteins: a review. Foods. 11(4):571. doi: 10.3390/foods11040571.
  • O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE. 2010. Prebiotics from marine macroalgae for human and animal health applications. Mar Drugs. 8(7):2038–2064. doi: 10.3390/md8072038.
  • Øverland M, Mydland LT, Skrede A. 2019. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J Sci Food Agric. 99(1):13–24. doi: 10.1002/jsfa.9143.
  • Patel AK, Singhania RR, Awasthi MK, Varjani S, Bhatia SK, Tsai M-L, Hsieh S-L, Chen C-W, Dong C-D. 2021. Emerging prospects of macro- and microalgae as prebiotic. Microb Cell Fact. 20(1):1–112. doi: 10.1186/s12934-021-01601-7.
  • Pimentel FB, Alves RC, Harnedy PA, FitzGerald RJ, Oliveira MBPP. 2019. Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends Food Sci Technol. 93:106–124. doi: 10.1016/j.tifs.2019.09.006.
  • Pomar C, van Milgen J, Remus A. 2019. 18: precision livestock feeding, principle and practice. Poultry Pig Nutri. Wageningen Academic Publishers. 397–418. doi: 10.3920/978-90-8686-884-1.
  • Ramesh Kumar B, Deviram G, Mathimani T, Duc PA, Pugazhendhi A. 2019. Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol. 17:583–588. doi: 10.1016/j.bcab.2019.01.017.
  • Shannon E, Conlon M, Hayes M. 2021. Seaweed components as potential modulators of the gut microbiota. Mar Drugs. 19(7):358. doi: 10.3390/md19070358.
  • Silva A, Silva SA, Carpena M, Garcia-Oliveira P, Gullón P, Barroso MF, Prieto MA, Simal-Gandara J. 2020. Macroalgae as a source of valuable antimicrobial compounds: extraction and applications. Antibiotics (Basel). 9(10):642. doi: 10.3390/antibiotics9100642.
  • Wan AHL, Davies SJ, Soler‐Vila A, Fitzgerald R, Johnson MP. 2019. Macroalgae as a sustainable aquafeed ingredient. Rev Aquacult. 11(3):458–492. doi: 10.1111/raq.12241.
  • Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B. 2019. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends Food Sci Technol. 88:1–9. doi: 10.1016/j.tifs.2019.03.005.
  • Yu B, Chiou WS. 1997. The morphological changes of intestinal mucosa in growing rabbits. Lab Anim. 31(3):254–263. doi: 10.1258/002367797780596301.
  • Zduńczyk Z, Juśkiewicz J, Jankowski J, Koncicki A. 2004. Performance and caecal adaptation of turkeys to diets without or with antibiotic and with different levels of mannan-oligosaccharide. Arch Anim Nutr. 58(5):367–378. doi: 10.1080/00039420400005042.