174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phenolic profile and antioxidant activity of hemp co-products following green chemical extraction and ex vivo digestion

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 651-663 | Received 28 Jan 2024, Accepted 22 Apr 2024, Published online: 14 May 2024

References

  • Aloo SO, Kwame FO, Oh DH. 2023. Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. Food Biosci. 51:102329. doi: 10.1016/j.fbio.2022.102329.
  • Abdalla AEM, Darwish SM, Ayad EHE, El-Hamahmy RM. 2007. Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food. Chem. 103(4):1134–1140. doi: 10.1016/j.foodchem.2006.10.017.
  • Abdelaleem MA, Elbassiony K. 2021. Evaluation of phytochemicals and antioxidant activity of gamma irradiated quinoa (Chenopodium quinoa). Braz J Biol. 81(3):806–813. doi: 10.1590/1519-6984.232270.
  • AOAC. 2005. Official Methods of Analysis. 18th ed.. Washington DC, USA :AOAC International:,
  • Attard E. 2013. A rapid microtitre plate folin-ciocalteu method for the assessment of polyphenols. Open Life Sci. 8(1):48–53. doi: 10.2478/s11535-012-0107-3.
  • Baumgärtel T, Kluth H, Epperlein K, Rodehutscord M. 2007. A note on digestibility and energy value for sheep of different grape pomace. Small Rumin. Res. 67(2-3):302–306. doi: 10.1016/j.smallrumres.2005.11.002.
  • Beleggia R, Iannucci A, Menga V, Quitadamo F, Suriano S, Citti C, Pecchioni N, Trono D. 2023. Impact of chitosan-based foliar application on the phytochemical content and the antioxidant activity in Hemp (Cannabis sativa L.) Inflorescences. Plants. 12(21):3692. doi: 10.3390/plants12213692.
  • Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. 2017. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J Pharm Biomed Anal. 143:228–236. doi: 10.1016/j.jpba.2017.05.049.
  • Chen T, He J, Zhang J, Li X, Zhang H, Hao J, Li L. 2012. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 134(2):1030–1037. doi: 10.1016/j.foodchem.2012.03.009.
  • Conde-Hernández LA, Guerrero-Beltrán J. 2014. Total phenolics and antioxidant activity of Piper auritum and Porophyllum ruderale. Food Chem. 142:455–460. doi: 10.1016/j.foodchem.2013.07.078.
  • Devle H, Ulleberg EK, Naess-Andresen CF, Rukke EO, Vegarud G, Ekeberg D. 2014. Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. Int. Dairy J. 36(1):6–13. doi: 10.1016/j.idairyj.2013.11.008.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2011. Scientific Opinion on the safety of hemp (Cannabis genus) for use as animal feed. EFSA J. 9, 2011.
  • Ely K, Fike J. 2022. Industrial hemp and hemp byproducts as sustainable feedstuffs in livestock diets. In: Agrawal DC, Kumar R, Dhanasekaran M, editors. Cannabis/Hemp for Sustainable Agriculture and Materials .(Singapore: Springer,. p. 145–162.
  • Engin KN. 2009. Alpha-tocopherol: looking beyond an antioxidant. Mol Vis. 15:855–860.
  • European Union (EU). 2020. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly FoodSystem PDF Report. [ Dec 13]. https://ec.europa.eu/food/horizontal-topics/farm-fork-strategy_en.
  • European Union (EU). 2022. Commission Regulation (EU) 2022/1104 of 1 July 2022, amending Regulation (EU) No 68/2013 on the Catalogue of feed materials. http://data.europa.eu/eli/reg/2022/1104/oj.
  • Farinon B, Molinari R, Costantini L, Merendino N. 2020. The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients. 12(7):1935. doi: 10.3390/nu12071935.
  • FAO. 2011. Global food losses and food waste—extent, causes, and prevention. Rome: FAO
  • Fetting C. 2020. The European green deal. ESDN report, p. 53.
  • Granaria Commodity Trading Association Milano. 2024. Listini Granaria Associazione Granaria di Milano. https://www.granariamilano.it/listini-granaria/.
  • Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I. 2018. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 241:480–492. doi: 10.1016/j.foodchem.2017.08.117.
  • Gülçin İ. 2006. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicol. 217(2–3):213–220.
  • Goulas V, Hadjisolomou A. 2019. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. Food Sci. Technol. 101:269–275. doi: 10.1016/j.lwt.2018.11.003.
  • Gülçin İ. 2006. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology. 217(2-3):213–220. doi: 10.1016/j.tox.2005.09.011.
  • Halle I, Schöne F. 2013. Influence of rapeseed cake, linseed cake and hemp seed cake on laying performance of hens and fatty acid composition of egg yolk. J Verbr Lebensm. 8(3):185–193. doi: 10.1007/s00003-013-0822-3.
  • Horne MRL. 2020. Bast fibres: hemp cultivation and production. In: Handbook of natural fibres (Second Edition). Kozlowski RM, Mackiewicz-Talarczyk M, editors; Woodhead Publishing: Cambridge, UK, 163–196.
  • House JD, Neufeld J, Leson G. 2010. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J Agric Food Chem. 58(22):11801–11807. doi: 10.1021/jf102636b.
  • House JD. 2021. Evaluation of the safety and efficacy of hemp seed and hemp seed-derived products for use in animal feeds in Canada. In Hemp Products and Animal Health Conference. Knoxville, TN.
  • Ingallina C, Sobolev AP, Circi S, Spano M, Fraschetti C, Filippi A, Di Sotto A, Di Giacomo S, Mazzoccanti G, Gasparrini F, et al. 2020. Cannabis sativa L. inflorescences from monoecious cultivars grown in central Italy: an untargeted chemical characterization from early flowering to ripening. Molecules. 25(8):1908. doi: 10.3390/molecules25081908.
  • Izzo L, Castaldo L, Narváez A, Graziani G, Gaspari A, Rodríguez-Carrasco Y, Ritieni A. 2020a. Analysis of phenolic compounds in commercial Cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMS. Molecules. 25(3):631. doi: 10.3390/molecules25030631.
  • Izzo L, Pacifico S, Piccolella S, Castaldo L, Narváez A, Grosso M, Ritieni A. 2020b. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules. 25(16):3710. doi: 10.3390/molecules25163710.
  • Jastrząb A, Jarocka-Karpowicz I, Skrzydlewska E. 2022. The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci. 23(14):7929. doi: 10.3390/ijms23147929.
  • Jing M, Zhao S, House JD. 2017. Performance and tissue fatty acid profile of broiler chickens and laying hens fed hemp oil and HempOmegaTM. Poult Sci. 96(6):1809–1819. doi: 10.3382/ps/pew476.
  • Kashima M. 1999. Effects of catechins on superoxide and hydroxyl radical. Chem Pharm Bull (Tokyo). 47(2):279–283. doi: 10.1248/cpb.47.279.
  • Kim JW, Nyachoti CM. 2017. Determination of net energy content of hemp hulls and processed hemp hull products fed to growing pigs using indirect calorimetry. J. Anim. Sci. 95(suppl_2):49–50. doi: 10.2527/asasmw.2017.106.
  • Kim JW, Koo B, Kim IH, Nyachoti CM. 2018. Effects of extrusion and microbial phytase on the apparent and standardized total tract digestibility of phosphorus in hemp hulls fed to growing pigs. J Anim Sci. 96(5):1838–1845. doi: 10.1093/jas/sky097.
  • Kleinhenz MD, Magnin G, Ensley SM, Griffin JJ, Goeser J, Lynch E, Coetzee JF. 2020. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 36(4):489–494. doi: 10.15232/aas.2020-02018.
  • Khokhar S, Apenten RKO. 2003. Iron binding characteristics of phenolic compounds: some tentative structure–activity relations. Food Chem. 81(1):133–140. doi: 10.1016/S0308-8146(02)00394-1.
  • Lim KJA, Cabajar AA, Lobarbio CFY, Taboada EB, Lacks DJ. 2019. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. J Food Sci Technol. 56(5):2536–2544. doi: 10.1007/s13197-019-03732-7.
  • Lanzoni D, Skřivanová E, Rebucci R, Crotti A, Baldi A, Marchetti L, Giromini C. 2023a. Total Phenolic Content and Antioxidant Activity of In Vitro Digested Hemp-Based Products. Foods. 12(3):601. doi: 10.3390/foods12030601.
  • Lanzoni D, Skrivanova E, Pinotti L, Rebucci R, Baldi A, Giromini C. 2023b. Review: Nutritional Aspects of Hemp-based Products and their Effects on Health and Performance of Monogastric Animals. Animal. 18(2):101058. doi: 10.1016/j.animal.2023.101058.
  • Lanzoni D, Rebucci R, Cheli F, Cavaliere R, Ghilardi G, Marchetti L, Crotti A, Baldi A, Giromini C. 2024. Functional characterisation of Euglena gracilis following growth medium enrichment. Ital. J. Anim. Sci. 23(1):53–64. doi: 10.1080/1828051X.2023.2289564.
  • Leopoldini M, Russo N, Chiodo S, Toscano M. 2006. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem. 54(17):6343–6351. doi: 10.1021/jf060986h.
  • Ma Y, Yang Y, Gao J, Feng J, Shang Y, Wei Z. 2020. Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food Chem Toxicol. 135:110941. doi: 10.1016/j.fct.2019.110941.
  • Makkar HPS. 2018. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal. 12(8):1744–1754. doi: 10.1017/S175173111700324X.
  • Mirzaei-Aghsaghali A, Maheri-Sis N. 2008. Nutritive value of some agro-industrial by-products for ruminants-A review. World J. Zool. 3(2):40–46.
  • Moscariello C, Matassa S, Esposito G, Papirio S. 2021. From residue to resource: the multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 175:105864. doi: 10.1016/j.resconrec.2021.105864.
  • Nagy DU, Cianfaglione K, Maggi F, Sut, SDS. 2019. Chemical characterization of leaves, male and female flowers from spontaneous Cannabis (Cannabis sativa L.) growing in Hungary. Chem. Biodivers. 16(3):e1800562.
  • Olivas‐Aguirre FJ, Gaytán‐Martínez M, Mendoza‐Díaz SO, González‐Aguilar GA, Rodrigo‐García J, Martínez‐Ruiz NDR, Wall‐Medrano A. 2017. In vitro digestibility of phenolic compounds from edible fruits: could it be explained by chemometrics? Int J of Food Sci Tech. 52(9):2040–2048. doi: 10.1111/ijfs.13482.
  • Özbek H, Halahlih F, Göğüş F, Koçak Yanık D, Azaizeh H. 2020. Pistachio (Pistacia vera L.) Hull as a potential source of phenolic compounds: evaluation of ethanol–water binary solvent extraction on antioxidant activity and phenolic content of pistachio hull extracts. Waste Biomass Valor. 11(5):2101–2110. doi: 10.1007/s12649-018-0512-6.
  • Pineda-Vadillo C, Nau F, Dubiard CG, Cheynier V, Meudec E, Sanz-Buenhombre M, Guadarrama A, Tóth T, Csavajda É, Hingyi H, et al. 2016. In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res. Int. 88:284–292. doi: 10.1016/j.foodres.2016.01.029.
  • Pinotti L, Manoni M, Fumagalli F, Rovere N, Luciano A, Ottoboni M, Ferrari L, Cheli F, Djuragic O. 2020. Reduce, reuse, recycle for foodwaste: a second life for fresh-cut leafy salad crops in animal diets. Animals. 10(6):1082. doi: 10.3390/ani10061082.
  • Pinotti L, Ferrari L, Fumagalli F, Luciano A, Manoni M, Mazzoleni S, Govoni C, Rulli MC, Lin P, Bee G, et al. 2023. Pig-based bioconversion: the use of former food products to keep nutrients in the food chain. Animal. 17 Suppl 2:100918. doi: 10.1016/j.animal.2023.100918.
  • Prasad KN, Yang E, Yi C, Zhao M, Jiang Y. 2009. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. Technol. 10(2):155–159. doi: 10.1016/j.ifset.2008.11.007.
  • Rakita S, Banjac V, Djuragic O, Cheli F, Pinotti L. 2021. Soybean molasses in animal nutrition. Animals. 11(2):514. doi: 10.3390/ani11020514.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9-10):1231–1237. doi: 10.1016/s0891-5849(98)00315-3.
  • Rehman M, Fahad S, Du G, Cheng X, Yang Y, Tang K, Liu L, Liu F-H, Deng G. 2021. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environ Sci Pollut Res Int. 28(38):52832–52843. doi: 10.1007/s11356-021-16264-5.
  • Robbins R. 2003. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 51(10):2866–2887. doi: 10.1021/jf026182t.
  • Rotta EM, Haminiuk CW, Maldaner L, Visentainer JV. 2017. Determination of antioxidant activity and phenolic compounds of Muntingia calabura Linn. peel by HPLC‐DAD and UPLC‐ESI‐MS/MS. Int J of Food Sci Tech. 52(4):954–963. doi: 10.1111/ijfs.13359.
  • Rupasinghe HV, Davis A, Kumar SK, Murray B, Zheljazkov VD. 2020. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules. 25(18):4078. doi: 10.3390/molecules25184078.
  • Salami SA, Luciano G, O'Grady MN, Biondi L, Newbold CJ, Kerry JP, Priolo A. 2019. Sustainability of feeding plant by-products: a review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 251:37–55. doi: 10.1016/j.anifeedsci.2019.02.006.
  • Sinclair JR. 2019. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev Sci Tech. 38(1):145–154. doi: 10.20506/rst.38.1.2949.
  • Spigno G, Tramelli L, De Faveri DM. 2007. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 81(1):200–208. doi: 10.1016/j.jfoodeng.2006.10.021.
  • Sun C, Wu Z, Wang Z, Zhang H. 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based Complementary Altern. Med. 2015:1, 9.
  • Teh S-S, Bekhit AE-D, Birch J. 2014. Antioxidative polyphenols from defatted oilseed cakes: effect of solvents. Antioxidants. 3(1):67–80. doi: 10.3390/antiox3010067.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 74(10):3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2.
  • Vastolo A, Calabrò S, Pacifico S, Koura BI, Cutrignelli MI. 2021. Chemical and nutritional characteristics of Cannabis sativa L. co‐products. J Anim Physiol Anim Nutr . 105 Suppl 1(Suppl 1):1–9. doi: 10.1111/jpn.13557.
  • Vastolo A, Calabrò S, Cutrignelli MI. 2022. A review on the use of agro-industrial CO-products in animals’ diets. Ita. J. Anim. Sci. 21(1):577–594. doi: 10.1080/1828051X.2022.2039562.
  • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet. 393(10170):447–492. doi: 10.1016/S0140-6736(18)31788-4.
  • Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzyński M, Nowakowska D, Matwijczuk A. 2020. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-a non-systematic review. Nutrients. 12(5):1401. doi: 10.3390/nu12051401.
  • Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. 2018. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 31(6):332–336. doi: 10.1159/000491755.