2,433
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Advancing Automated Content Analysis for a New Era of Media Effects Research: The Key Role of Transfer Learning

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abid, A., Farooqi, M., & Zou, J. (2021, May 19 - 21). Persistent anti-Muslim bias in large language models. In Proceedings of the 2021 aaai/acm conference on ai, ethics, and society, Virtual Event USA (pp. 298–306).
  • Acheampong, F. A., Nunoo-Mensah, H., & Chen, W. (2021, 12). Transformer models for text-based emotion detection: A review of BERT-based approaches. Artificial Intelligence Review, 54(8), 5789–5829. https://doi.org/10.1007/s10462-021-09958-2
  • Arango, A., Pérez, J., & Poblete, B. (2019). Hate speech detection is not as easy as you may think: A closer look at model validation. In Proceedings of the 42nd international acm sigir conference on research and development in information retrieval, Paris France (pp. 45–54).
  • Bach, R. L., Kern, C., Bonnay, D., & Kalaora, L. (2022). Understanding political news media consumption with digital trace data and natural language processing. Journal of the Royal Statistical Society Series A: Statistics in Society, 185(Supplement_2), S246–S269. https://doi.org/10.1111/rssa.12846
  • Barlas, G., & Stamatatos, E. (2020). Cross-domain authorship attribution using pre-trained language models. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations (pp. 255–266). New York: Springer International Publishing.
  • Beigi, O. M., & Moattar, M. H. (2021). Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification. Knowledge-Based Systems, 213, 106423. https://doi.org/10.1016/j.knosys.2020.106423
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March 3 - 10). On the dangers of stochastic parrots: Can language models be too big?[U+FFFD][U+FFFD]. In Proceedings of the 2021 acm conference on fairness, accountability, and transparency, Canada (pp. 610–623).
  • Bennett, W. L., & Iyengar, S. (2008). A new era of minimal effects? the changing foundations of political communication. Journal of Communication, 58(4), 707–731. https://doi.org/10.1111/j.1460-2466.2008.00410.x
  • Bestvater, S. E., & Monroe, B. L. (2022, April). Sentiment is not stance: Target-aware opinion classification for political text analysis. Political Analysis, 31(2), 235–256. https://doi.org/10.1017/pan.2022.10
  • Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., & others. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.
  • Boukes, M., Van de Velde, B., Araujo, T., & Vliegenthart, R. (2020). What’s the tone? easy doesn’t do it: Analyzing performance and agreement between off-the-shelf sentiment analysis tools. Communication Methods and Measures, 14(2), 83–104. https://doi.org/10.1080/19312458.2019.1671966
  • Boumans, J. W., & Trilling, D. (2016). Taking stock of the toolkit: An overview of relevant automated content analysis approaches and techniques for digital journalism scholars. Digital Journalism, 4(1), 8–23. https://doi.org/10.1080/21670811.2015.1096598
  • Breuer, J., Wulf, T., & Mohseni, M. R. (2020, August). New formats, new methods: Computational approaches as a way forward for media entertainment research. Media and Communication, 8(3), 147–152. https://doi.org/10.17645/mac.v8i3.3530 https://www.cogitatiopress.com/mediaandcommunication/article/view/3530
  • Burnell, K., George, M. J., Kurup, A. R., Underwood, M. K., & Ackerman, R. A. (2021). Associations between self-reports and device-reports of social networking site use: An application of the truth and bias model. Communication Methods and Measures, 15(2), 156–163. https://doi.org/10.1080/19312458.2021.1918654
  • Burscher, B., Odijk, D., Vliegenthart, R., De Rijke, M., & De Vreese, C. H. (2014). Teaching the computer to code frames in news: Comparing two supervised machine learning approaches to frame analysis. Communication Methods and Measures, 8(3), 190–206. https://doi.org/10.1080/19312458.2014.937527
  • Burscher, B., Vliegenthart, R., & De Vreese, C. H. (2015a). Using supervised machine learning to code policy issues: Can classifiers generalize across contexts? The ANNALS of the American Academy of Political and Social Science, 659(1), 122–131. https://doi.org/10.1177/0002716215569441
  • Burscher, B., Vliegenthart, R., & De Vreese, C. H. (2015b, May). Using supervised machine learning to code policy issues: Can classifiers generalize across contexts? The ANNALS of the American Academy of Political and Social Science, 659(1), 122–131. https://doi.org/10.1177/0002716215569441
  • Burscher, B., Vliegenthart, R., & Vreese, C. H. D. (2015). Using supervised machine learning to code policy issues: Can classifiers generalize across contexts? The Annals of the American Academy of Political and Social Science, 659(1), 122–131. https://doi.org/10.1177/0002716215569441
  • Casas, A., & Williams, N. W. (2019). Images that matter: Online protests and the mobilizing role of pictures. Political Research Quarterly, 72(2), 360–375. https://doi.org/10.1177/1065912918786805
  • Casas, A., & Williams, N. W. (2022). Introduction to the special issue on images as data. Computational Communication Research, 4(1), 1–10. https://doi.org/10.5117/CCR2022.1.000.CASA
  • Chan, C.-H. (2023). Grafzahl: Fine-tuning transformers for text data from within R. Computational Communication Research, 5(1), 76–84. https://github.com/chainsawriot/grafzahl
  • Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
  • Delmondes Neto, J. P., & Paraboni, I. (2022). Multi-source BERT stack ensemble for cross-domain author profiling. Expert Systems, 39(3), e12869. https://doi.org/10.1111/exsy.12869
  • Deng, T., Kanthawala, S., Meng, J., Peng, W., Kononova, A., Hao, Q., & David, P. (2019). Measuring smartphone usage and task switching with log tracking and self-reports. Mobile Media & Communication, 7(1), 3–23. https://doi.org/10.1177/2050157918761491
  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, May 24). BERT: Pre-training of deep bidirectional transformers for language understanding. (arXiv:1810.04805[cs]). http://arxiv.org/abs/1810.04805
  • De Vreese, C. H., Boukes, M., Schuck, A., Vliegenthart, R., Bos, L., & Lelkes, Y. (2017). Linking survey and media content data: Opportunities, considerations, and pitfalls. Communication Methods and Measures, 11(4), 221–244. https://doi.org/10.1080/19312458.2017.1380175
  • De Vries, E., Schoonvelde, M., & Schumacher, G. (2018). No longer lost in translation: Evidence that Google translate works for comparative bag-of-words text applications. Political Analysis, 26(4), 417–430. https://doi.org/10.1017/pan.2018.26
  • Du, C., Sun, H., Wang, J., Qi, Q., & Liao, J. (2020). Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 4019–4028). Association for Computational Linguistics.
  • Elliott, E. W., Ho, K., & Holmes, J. S. (2009, May). Political science computing: A review of trends in computer evolution and political science research. Journal of Information Technology & Politics, 6(2), 166–175. https://doi.org/10.1080/19331680902821569
  • Firth, J. R. (1935). The technique of semantics. Transactions of the Philological Society, 34(1), 36–73. https://doi.org/10.1111/j.1467-968X.1935.tb01254.x
  • Flew, T., Spurgeon, C., Daniel, A., & Swift, A. (2012, April). The promise of computational journalism. Journalism Practice, 6(2), 157–171. https://doi.org/10.1080/17512786.2011.616655
  • Founta, A.-M., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringhini, G., & Kourtellis, N. (2018, April). Large scale crowdsourcing and characterization of twitter abusive behavior. arXiv. Retrieved September 7, 2023, from(arXiv:1802.00393[cs]) http://arxiv.org/abs/1802.00393
  • Gasparetto, A., Marcuzzo, M., Zangari, A., & Albarelli, A. (2022). A survey on text classification algorithms: From text to predictions. Information, 13(2), 83. https://doi.org/10.3390/info13020083
  • González-Bailón, S., & Paltoglou, G. (2015). Signals of public opinion in online communication: A comparison of methods and data sources. The ANNALS of the American Academy of Political and Social Science, 659(1), 95–107. https://doi.org/10.1177/0002716215569192
  • Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297. https://doi.org/10.1093/pan/mps028
  • Guo, W., & Caliskan, A. (2021, July). Detecting emergent intersectional biases: Contextualized word embeddings contain a distribution of human-like biases. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 122–133). Virtual Event USA: ACM. Retrieved 2022-12-28, from. https://doi.org/10.1145/3461702.3462536
  • Guo, L., Su, C., Paik, S., Bhatia, V., Akavoor, V. P., Gao, G., & Wijaya, D. (2022). Proposing an open-sourced tool for computational framing analysis of multilingual data. Digital Journalism, 11(2), 276–297. https://doi.org/10.1080/21670811.2022.2031241
  • Guo, L., Vargo, C. J., Pan, Z., Ding, W., & Ishwar, P. (2016). Big social data analytics in journalism and mass communication: Comparing dictionary-based text analysis and unsupervised topic modeling. Journalism & Mass Communication Quarterly, 93(2), 332–359. https://doi.org/10.1177/1077699016639231
  • Huang, Z., Zeng, Z., Liu, B., Fu, D., & Fu, J. (2020). Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849.
  • Huang, P.-S., Zhang, H., Jiang, R., Stanforth, R., Welbl, J., Rae, J., & Kohli, P. (2019). Reducing sentiment bias in language models via counterfactual evaluation. arXiv preprint arXiv:1911.03064.
  • Hutchinson, B., Prabhakaran, V., Denton, E., Webster, K., Zhong, Y., & Denuyl, S. (2020). Social biases in NLP models as barriers for persons with disabilities. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 5491–5501). Online: Association for Computational Linguistics. Retrieved 2023-09-07, from https://doi.org/10.18653/v1/2020.acl-main.487
  • Jürgens, P., & Stark, B. (2022). Mapping exposure diversity: The divergent effects of algorithmic curation on news consumption. Journal of Communication, 72(3), 322–344. https://doi.org/10.1093/joc/jqac009
  • Kleinnijenhuis, J., Van Hoof, A. M., Oegema, D., & De Ridder, J. A. (2007). A test of rivaling approaches to explain news effects: News on issue positions of parties, real-world developments, support and criticism, and success and failure. Journal of Communication, 57(2), 366–384. https://doi.org/10.1111/j.1460-2466.2007.00347.x
  • Kroon, A. C., van der Meer, T., & Vliegenthart, R. (2022, October). Beyond counting words: Assessing performance of dictionaries, supervised machine learning, and embeddings in topic and frame classification. Computational Communication Research, 4(2), 528–570. https://doi.org/10.5117/CCR2022.2.006.KROO
  • Laurer, M., van Atteveldt, W., Casas, A., & Welbers, K. (2023). Less annotating, more classifying: Addressing the data scarcity issue of supervised machine learning with deep transfer learning and BERT-NLI. Political Analysis, 1–33. https://doi.org/10.1017/pan.2023.20
  • Licht, H. (2023). Cross-lingual classification of political texts using multilingual sentence embeddings. Political Analysis, 31(3), 366–379. https://doi.org/10.1017/pan.2022.29
  • Lind, F., Eberl, J.-M., Eisele, O., Heidenreich, T., Galyga, S., & Boomgaarden, H. G. (2022). Building the bridge: Topic modeling for comparative research. Communication Methods and Measures, 16(2), 96–114. https://doi.org/10.1080/19312458.2021.1965973
  • Lin, Z., Welbers, K., Vermeer, S., & Trilling, D. (2022, October 20–22). Who is watching what? Exploring news consumption on YouTube through data donation. In European Communication Conference (ECREA). Aarhus, Denmark.
  • Lin, Z., Welbers, K., Vermeer, S., & Trilling, D. (2023). Beyond discrete genres: Mapping news items onto a multidimensional framework of genre cues. In International Conference on the Web and Social Media (ICWSM). (https://arxiv.org/abs/2212.04185)
  • Liu, R., Jia, C., Wei, J., Xu, G., Wang, L., & Vosoughi, S. (2021, 2-9 February). Mitigating political bias in language models through reinforced calibration. In Proceedings of the aaai conference on artificial intelligence (Vol. 35, pp. 14857–14866).
  • Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., & Chang, K.-W. (2019). Visualbert: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557.
  • Loecherbach, F., Moeller, J., Trilling, D., & van Atteveldt, W. (2022). Don’t miss the long tail: Website classification to identify local and niche news. Paris: ICA Conference 2022.
  • Loughran, T., & McDonald, B. (2011). When is a liability not a liability? textual analysis, dictionaries, and 10-ks. The Journal of Finance, 66(1), 35–65. https://doi.org/10.1111/j.1540-6261.2010.01625.x
  • Loureiro, D., Rezaee, K., Pilehvar, M. T., & Camacho-Collados, J. (2021). Analysis and evaluation of language models for word sense disambiguation. Computational Linguistics, 47(2), 1–57. https://doi.org/10.1162/coli_a_00405
  • Lu, K., Mardziel, P., Wu, F., Amancharla, P., & Datta, A. (2019, May). Gender bias in neural natural language processing. arXiv. (arXiv:1807.11714 [cs]). Retrieved December 28, 2022, from http://arxiv.org/abs/1807.11714
  • Maheshwari, P., & Nangi, S. R. (2022). Teamotter at semeval-2022 task 5: Detecting misogynistic content in multimodal memes. In Proceedings of the 16th international workshop on semantic evaluation (semeval-2022), Seattle, United States (pp. 642–647).
  • Majumdar, A., Shrivastava, A., Lee, S., Anderson, P., Parikh, D., & Batra, D. (2020). Improving vision-and-language navigation with image-text pairs from the web. In European conference on computer vision, Glasgow, United Kingdom (pp. 259–274).
  • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
  • Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2017). Advances in pre-training distributed word representations. arXiv preprint arXiv:1712.09405.
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26. https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
  • Nadeem, M. L. A. I. L., Bethke, A., & Reddy, S. (2020). Stereoset: Measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456.
  • Otto, L. P., Thomas, F., Glogger, I., & De Vreese, C. H. (2022). Linking media content and survey data in a dynamic and digital media environment–mobile longitudinal linkage analysis. Digital Journalism, 10(1), 200–215. https://doi.org/10.1080/21670811.2021.1890169
  • Poria, S., Cambria, E., Howard, N., Huang, G.-B., & Hussain, A. (2016). Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing, 174, 50–59. https://doi.org/10.1016/j.neucom.2015.01.095
  • Prior, M. (2009). The immensely inflated news audience: Assessing bias in self-reported news exposure. Public Opinion Quarterly, 73(1), 130–143. https://doi.org/10.1093/poq/nfp002
  • Qian, Y., Muaz, U., Zhang, B., & Hyun, J. W. (2019). Reducing gender bias in word-level language models with a gender-equalizing loss function. arXiv preprint arXiv:1905.12801.
  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAi Blog, 1(8), 9.
  • Rheault, L., & Cochrane, C. (2020). Word embeddings for the analysis of ideological placement in parliamentary corpora. Political Analysis, 28(1), 112–133. https://doi.org/10.1017/pan.2019.26
  • Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A., & Benevenuto, F. (2016). Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1), 1–29. https://doi.org/10.1140/epjds/s13688-016-0085-1
  • Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, Š., & Sedlmair, M. (2018). More than bags of words: Sentiment analysis with word embeddings. Communication Methods and Measures, 12(2–3), 140–157. https://doi.org/10.1080/19312458.2018.1455817
  • Ryu, M., Lee, G., & Lee, K. (2022). Knowledge distillation for BERT unsupervised domain adaptation. Knowledge and Information Systems, 64(11), 3113–3128. https://doi.org/10.1007/s10115-022-01736-y
  • Sanh, V. L. A. I. L., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 .
  • Scharkow, M., & Bachl, M. (2017, July). How measurement error in content analysis and self-reported media use leads to minimal media effect findings in linkage analyses: A simulation study. Political Communication, 34(3), 323–343. https://doi.org/10.1080/10584609.2016.1235640
  • Sewall, C. J., Bear, T. M., Merranko, J., & Rosen, D. (2020). How psychosocial well-being and usage amount predict inaccuracies in retrospective estimates of digital technology use. Mobile Media & Communication, 8(3), 379–399. https://doi.org/10.1177/2050157920902830
  • Shu, K., Mosallanezhad, A., & Liu, H. (2022). Cross-domain fake news detection on social media: A context-aware adversarial approach. In Frontiers in fake media generation and detection (pp. 215–232). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1524-6_9
  • Silva, A., Tambwekar, P., & Gombolay, M. (2021). Towards a comprehensive understanding and accurate evaluation of societal biases in pre-trained transformers. In Proceedings of the 2021 conference of the north american chapter of the association for computational linguistics: Human language technologies (pp. 2383–2389).
  • Soroka, S., & McAdams, S. (2015). News, politics, and negativity. Political Communication, 32(1), 1–22. https://doi.org/10.1080/10584609.2014.881942
  • Steed, R., Panda, S., Kobren, A., & Wick, M. (2022). Upstream mitigation is not all you need: Testing the bias transfer hypothesis in pre-trained language models. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 3524–3542). Dublin, Ireland: Association for Computational Linguistics. Retrieved 2022-12-28, from. https://doi.org/10.18653/v1/2022.acl-long.247
  • Steppat, D., Castro Herrero, L., & Esser, F. (2022, February). Selective exposure in different political information environments – how media fragmentation and polarization shape congruent news use. European Journal of Communication, 37(1), 82–102. https://doi.org/10.1177/02673231211012141
  • Stoll, A., Wilms, L., & Ziegele, M. (2023). Developing an incivility dictionary for German online discussions–a semi-automated approach combining human and artificial knowledge. Communication Methods and Measures, 17(2), 131–149. https://doi.org/10.1080/19312458.2023.2166028
  • Sun, Q., Wojcieszak, M., & Davidson, S. (2021, November). Over-time trends in incivility on social media: Evidence from political, non-political, and mixed sub-reddits over eleven years. Frontiers in Political Science, 3: 741605. https://doi.org/10.3389/fpos.2021.741605
  • Tay, Y., Dehghani, M., Bahri, D., & Metzler, D. (2020). Efficient transformers: A survey. ACM Computing Surveys (CSUR), 55(6), 1–28. https://doi.org/10.1145/3530811
  • Thelwall, M. (2017). The heart and soul of the web? sentiment strength detection in the social web with sentistrength. In Cyberemotions (pp. 119–134). Springer International Publishing. https://doi.org/10.1007/978-3-319-43639-5_7
  • Urman, A., & Makhortykh, M. (2022). “Foreign beauties want to meet you”: The sexualization of women in google’s organic and sponsored text search results. New Media & Society, 14614448221099536, 146144482210995. https://doi.org/10.1177/14614448221099536
  • van Atteveldt, W., & Peng, T.-Q. (2018). When communication meets computation: Opportunities, challenges, and pitfalls in computational communication science. Communication Methods and Measures, 12(2–3), 81–92. https://doi.org/10.1080/19312458.2018.1458084
  • Van Atteveldt, W., Van der Velden, M. A., & Boukes, M. (2021). The validity of sentiment analysis: Comparing manual annotation, crowd-coding, dictionary approaches, and machine learning algorithms. Communication Methods and Measures, 15(2), 121–140. https://doi.org/10.1080/19312458.2020.1869198
  • van Driel, I. I., Giachanou, A., Pouwels, J. L., Boeschoten, L., Beyens, I., & Valkenburg, P. M. (2022). Promises and pitfalls of social media data donations. Communication Methods and Measures, Online First, 16(4), 266–282. https://doi.org/10.1080/19312458.2022.2109608
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
  • Vermeer, S. A., Araujo, T., Bernritter, S. F., & van Noort, G. (2019). Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media. International Journal of Research in Marketing, 36(3), 492–508. https://doi.org/10.1016/j.ijresmar.2019.01.010
  • Vermeer, S. A., Trilling, D., Kruikemeier, S., & de Vreese, C. (2020). Online news user journeys: The role of social media, news websites, and topics. Digital Journalism, 8(9), 1114–1141. https://doi.org/10.1080/21670811.2020.1767509
  • Viehmann, C., Beck, T., Maurer, M., Quiring, O., & Gurevych, I. (2022). Investigating opinions on public policies in digital media: Setting up a supervised machine learning tool for stance classification. Communication Methods and Measures, 17(2), 150–184. https://doi.org/10.1080/19312458.2022.2151579
  • Widmann, T., & Wich, M. (2022, June 29). Creating and comparing dictionary, word embedding, and transformer-based models to measure discrete emotions in German political text. Political Analysis, 1–16. https://doi.org/10.2139/ssrn.4127133
  • Wijayanti, R., & Arisal, A. (2021). Automatic Indonesian sentiment lexicon curation with sentiment valence tuning for social media sentiment analysis. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 20(1), 1–16. https://doi.org/10.1145/3425632
  • Wilkerson, J., & Casas, A. (2017, May). Large-scale computerized text analysis in political science: Opportunities and challenges. Annual Review of Political Science, 20(1), 529–544. https://doi.org/10.1146/annurev-polisci-052615-025542
  • Wojcieszak, M., Menchen-Trevino, E., Goncalves, J. F. F., & Weeks, B. (2021, May). Avenues to news and diverse news exposure online: Comparing direct navigation, social media, news aggregators, search queries, and article hyperlinks. The International Journal of Press/politics, 27(4), 860–886. https://doi.org/10.1177/19401612211009160
  • Zellers, R., Bisk, Y., Farhadi, A., & Choi, Y. (2019). From recognition to cognition: Visual commonsense reasoning. In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, Long Beach, CA, USA (pp. 6720–6731).
  • Zhang, B. H., Lemoine, B., & Mitchell, M. (2018, December). Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (pp. 335–340). New Orleans LA USA: ACM. Retrieved 2022-12-28, from. https://doi.org/10.1145/3278721.3278779
  • Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brockett, C., Gao, X., & Dolan, B. (2019). Dialogpt: Large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536.
  • Zmigrod, R., Mielke, S. J., Wallach, H., & Cotterell, R. (2020, May). Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv. (arXiv:1906.04571 [cs]). Retrieved December 28, 2022, from http://arxiv.org/abs/1906.04571